• Title/Summary/Keyword: Combined heat and power plant

Search Result 137, Processing Time 0.021 seconds

An Application of Realistic Evaluation Model to the Large Break LOCA Analysis of Ulchin 3&4

  • C. H. Ban;B. D. Chung;Lee, K. M.;J. H. Jeong;S. T. Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.429-434
    • /
    • 1996
  • K-REM[1], which is under development as a realistic evaluation model of large break LOCA, is applied to the analysis of cold leg guillotine break of Ulchin 3&4. Fuel parameters on which statistical analysis of their effects on the peak cladding temperature (PCT) are made and system parameters on which the concept of limiting value approach (LVA) are applied, are determined from the single parameter sensitivity study. 3 parameters of fuel gap conductance, fuel thermal conductivity and power peaking factor are selected as fuel related ones and 4 parameters of axial power shape, reactor power, decay heat and the gas pressure of safety injection tank (SIT) are selected as plant system related ones. Response surface of PCT is generated from the plant calculation results and on which Monte Carlo sampling is made to get plant application uncertainty which is statistically combined with code uncertainty to produce the 95th percentile PCT. From the break spectrum analysis, blowdown PCT of 1350.23 K and reflood PCT of 1195.56 K are obtained for break discharge coefficients of 0.8 and 0.5, respectively.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Virtual Analysis of District Heating System Using ENetPLAN (EnetPLAN을 이용한 지역난방시스템 가상 운전 분석)

  • Ahn, Jeongjin;Lee, Minkyung;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.18-25
    • /
    • 2019
  • In this study, in order to solve the problem of the program of calculating code input by experienced users in the power generation, the wide area energy network research group developed the local heating operation analysis program EntPLAN, which can be easily used by anyone, including scalability, with domestic technology. Therefore, the Commission intended to compare the heat sources, heat demand, and the results of operation of the combined heat plant (CHP) on the energy network through simulation with the EnetPLAN and the program A on the market. The results showed that the heat and power output on the energy network of the EnetPLAN and A programs were mostly similar in pattern in the simulation results of the heat supply and the operation method of the accumulator. This enabled the application of the simulation for the various operation modes of the cogeneration facilities existing on the energy network. It is expected that EntPLAN, which was developed with domestic technology, will be easily applied in the field in the future and will present efficient operation simulation results.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling (액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화)

  • PARK, SUNGHO;AHN, JUNKEON;RYU, JUYEOL;KO, AREUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

PM10 Emission Estimation from LNG G/T Power Plants and Its Important Analysis on Air Quality in Incheon Area (인천 지역 LNG G/T발전소의 미세먼지 (PM10) 배출량 평가 및 주변 대기질 영향 분석)

  • Gong, Bu-Ju;Park, Poong-Mo;Dong, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • Base on emission factors derived from National Institute of Environmental Research, Particulate matter from combined cycle power plants (CCPPs) has been estimated to be a important source of $PM_{10}$. Generally there is no serious emission of particulate matter in CCPPs. because the fuel of them is natural gas. But emission gas after long shut down season has very high dust content. Therefore $PM_{10}$ emission rate is dependent on its operation mode. In this study, particulate dispersion study for new city near CCPPs complex has performed using CALPUFF model for three case. $PM_{10}$ concentration has big difference between normal operation and 2 case start-up condition after long shutdown. In normal operating conditions, daily $0.32{\sim}0.50{\mu}g/m^3$ influence on of the surrounding area. But when 1~2 aerobic high concentration discharged conditions, average concentration is higher about $9.2{\sim}34.1{\mu}g/m^3$ than normal operating conditions.

Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

  • Chavagnat, Florian;Curtis, Daniel
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.488-493
    • /
    • 2018
  • The Firebrick Resistance-Heated Energy Storage (FIRES) concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP) with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa). The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions.

The Study on Long-Terms Properties of Concrete Using C Class Fly Ash (C급 플라이애쉬 콘크리트의 장기특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kwon, Yeong-Ho;Ahn, Jae-Hyen;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.141-145
    • /
    • 1996
  • The primary purpose of this study is to investigate reusal techniques of by-product produced the combined heat power plant in the construction field, which may contribute to the savings of construction materials and the conservation of enviornment. This study is compared and evaluated by testing the chemical resistance, adiabatic temperature rising test, creep and drying shrinkage. As the result of the study, the following conclusions are derived : (1) hydration heat of the fly ash concrete is less than the plain concrete in adiabatic temperature rising test, (2) the fly axh concrete (FA 30%) is similar to the plain concrete in the chemical resistamce, (3) the fly ash concrete (FA 10, 30%) is similar to the plain concrete in drying shrinkage, but the fly ash concrete (FA 50%) is highly increased, (4) the fly ash concrete (FA 30%) is less than the plain concrete in creep test.

  • PDF

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus (민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출)

  • Park, Sung-Ho;Jeon, Dong-Hwan;Yun, Sung-Phil;Chung, Seok-Woo;Choi, Ho-Kyung;Lee, Si-Hyun
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.298-305
    • /
    • 2014
  • Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.