• 제목/요약/키워드: Combined cycle power plants

검색결과 90건 처리시간 0.023초

로직에 기반 한 트리 구조의 퍼지 뉴럴 네트워크를 이용한 복합 화력 발전소의 출력 예측 (Output Power Prediction of Combined Cycle Power Plant using Logic-based Tree Structured Fuzzy Neural Networks)

  • 한창욱;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.529-533
    • /
    • 2019
  • 오늘날 복합 화력 발전소는 전력 생산을 위해 많이 사용되고 있고, 최근에는 운전 매개 변수를 기반으로 발전 출력을 예측하는 것이 주요 관심사이다. 본 논문에서는 복합 화력 발전소의 출력을 예측하기 위해 컴퓨터 지능 기법을 이용하는 방법을 제시한다. 컴퓨터 지능 기술은 지속적으로 발전되어 많은 실제 문제에 적용되어 왔다. 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 발전 출력을 예측하고자 한다. 트리 구조의 퍼지 뉴럴 네트워크는 퍼지 뉴런을 노드로 선택하고 관련 입력을 최적으로 선택하여 규칙 수를 줄이는 장점이 있다. 네트워크의 최적화를 위해 2 단계 최적화 방법이 사용된다. 유전 알고리즘은 최적의 노드와 리프를 선택하여 네트워크의 이진 구조를 최적화 한 다음 랜덤 신호 기반 학습을 수행하여 최적화 된 이진 연결을 단위 구간에서 미세 학습한다. 제안 된 방법의 유용성을 검증하기 위해 UCI Machine Learning Repository Database에서 얻은 복합 화력 발전소 데이터를 사용한다.

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

가스터빈 결빙방지 시스템이 복합화력발전 시스템의 성능에 미치는 영향 (Analysis of the Influence of Anti-icing System on the Performance of Combined Cycle Power Plants)

  • 문성원;김정호;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2016
  • Anti-icing is important in gas turbines because ice formation on compressor inlet components, especially inlet guide vane, can cause performance degradation and mechanical damages. In general, the compressor bleeding anti-icing system that supplies hot air extracted from the compressor discharge to the engine intake has been used. However, this scheme causes considerable performance drop of gas turbines. A new method is proposed in this study for the anti-icing in combined cycle power plants(CCPP). It is a heat exchange heating method, which utilizes heat sources from the heat recovery steam generator(HRSG). We selected several options for the heat sources such as steam, hot water and exhaust gas. Performance reductions of the CCPP by the various options as well as the usual compressor bleeding method were comparatively analyzed. The results show that the heat exchange heating system would cause a lower performance decrease than the compressor bleeding anti-icing system. Especially, the option of using low pressure hot water is expected to provide the lowest performance reduction.

통합적 엑서지에 의한 발전 플랜트의 열경제학적 해석 (Thermoeconomic Analysis of Power Plants with Integrated Exergy Stream)

  • 김덕진;이현수;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.871-878
    • /
    • 2000
  • Exergetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy stream of matter into thermal and mechanical exergies. The calculated costs of electricity are almost same within 0.5% as those obtained by the thermoeconomic method with decomposition of exergy into thermal and mechanical exergies of the combined cycle plant. However for the gas-turbine cogeneration plant having different kinds of products. the difference in the unit costs of products, obtained from the two methodologies is about 2%. Such outcome indicates that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously.

  • PDF

복합 화력 Condensate Pump 의 고진동 사례 분석 및 대책 (A Case Study on High Vibration in a Condensate Pump for Combined Cycle Power Plants)

  • 최성필;류석주;하현천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.510-513
    • /
    • 2001
  • Several kinds of vibration problems have been frequently encountered in industrial vertical pumps in spite of their widespread use for long time. In fact, vibration problems of the vertical pumps are so complicated and difficult with compared to those of the horizontally mounted pumps that more careful attention should be taken for solving the vibration problems. This paper introduces a case study experienced from troubleshooting for excessive vibration occurred in a vertical-type condensate pump for combined cycle power plants. Subsynchronous whirl vibration was caused by the instability of the guide bearing whose lubricant is water. A newly modified guide bearing has solved the vibration problem, which should be the best countermeasure.

  • PDF

증기연계 공정을 가지는 석탄가스화 복합발전플랜트의 성능해석 (Performance Analysis of the Integrated Gasification Combined Cycle Power Plant with Steam Integration)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.43-50
    • /
    • 2009
  • Waste heat recovery process designs and performance analyses are conducted on the IGCC(Integrated Gasification Combined Cycle) power plants integrated with two different coal gasification and gas cleanup processes by Shell and GE/Texaco. Through the analysis results, the present study provides the steam integration concept between the HRSG and the chemical processes of IGCC power plant, and investigates the effect of steam integration on the power generation of IGCC power plant. The present simulation results show less steam power output and higher overall IGCC efficiency of the Shell-based power plant than the GE/Texaco.

Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석 (Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel)

  • 이종준;차규상;손정락;주용진;김동섭
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석 (Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants)

  • 이영덕;이상민;박준홍;유상석;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF

가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증 (Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System)

  • 장지훈;한가람;박호영;이욱륜;허강열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.