• Title/Summary/Keyword: Combined configurations

Search Result 95, Processing Time 0.02 seconds

A Study on Beat Transfer Characteristics in the Air Side of Large-scaled Heat Exchanger (확대모형 열교환기를 이용한 공기측 열전달 성능에 관한 연구)

  • Byun Ju-Suk;Lee Jinho;Hong Man-Gi;Jeon Chang-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1032-1041
    • /
    • 2005
  • This study is performed to investigate the heat transfer characteristics of heat exchanger according to the arrangement of fins as well as fin configuration by using the four times enlarged model. Friction factor, Colburn j factor and goodness factors are compared to each other to estimate performance of each case for 4 different kinds of fins, which are plain, single side slit, double side slit and louver fin. Results show that heat transfer would be altered by fin arrangement and that friction loss is more affected by fin configurations than by the fin arrangements. In particular, heat transfer depends more on the shape of front row than that of rear row. The heat transfer rate of combined fin arrangement increases a lot more under the same pressure drop than that of conventional fin arrangement. This indicates that the heat exchanger of higher efficiency would be designed by the proper combination of fins, of different shapes.

Classification of Vertebral Body Fractures with Two-level Posterior Column Injuries of the Thoracolumbar Spine (두 개의 수준을 침범한 후주손상을 동반한 흉요추부 추체 골절의 분류)

  • Koh, Young-Do;Jeong, Hoon;Yeo, Sung-Gu
    • Journal of Trauma and Injury
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • Purpose: We evaluate the characteristics of vertebral body fractures in two level flexion-distraction injuries of the thoracolumbar spine Methods: The findings of radiographs, computed tomographs, and MRIs of 43 patients with flexion-distraction injuries combined with vertebral body fractures were retrospectively evaluated. We divided the patients with bursting fractures into two groups, the distractive group (posterior vertebral height ratio >1) and the compressive group (vertebral height ratio <1). Results: There were 23 compression fractures and 20 bursting fractures. In bursting fractures, the distractive group had 5 cases, and the compressive group 15 cases. In 24 cases (55.8%), the interspinous distances were widened. The average of the canal encroachment was 4% in the distractive group and 40% in the compressive group. At last follow-up, the average loss of correction was 2.0 degree in compression fractures and 2.7 degree in bursting fractures. Conclusion: The configurations of vertebral body fractures in flexion-distraction injuries of the thoracolumbar spine were varied as to the location of the axis of flexion. Because bursting fractures in flexion-distraction injuries had distractive or compressive features, one should consider that in establishing operative plan.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

Modelling of beam-to-column connections at elevated temperature using the component method

  • Sulong, N.H. Ramli;Elghazouli, A.Y.;Izzuddin, B.A.;Ajit, N.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.23-43
    • /
    • 2010
  • In this paper, a nonlinear model is developed using the component method in order to represent the response of steel connections under various loading conditions and temperature variations. The model is capable of depicting the behaviour of a number of typical connection types including endplate forms (extended and flush) and angle configurations (double web, top and seat, and combined top-seat-web) in both steel and composite framed structures. The implementation is undertaken within the finite element program ADAPTIC, which accounts for material and geometric nonlinearities. Verification of the proposed connection model is carried out by comparing analytical simulations with available results of isolated joint tests for the ambient case, and isolated joint as well as sub-frame tests for elevated temperature conditions. The findings illustrate the reliability and efficiency of the proposed model in capturing the stiffness and strength properties of connections, hence highlighting the adequacy of the component approach in simulating the overall joint behaviour at elevated temperature.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang;Peng, Da;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.49-63
    • /
    • 2020
  • Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

A Method for Reducing the Residual Voltage of Hybrid SPD Circuit Using Choke Coils (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.250-253
    • /
    • 2007
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for commnuication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the activation voltage required to initiate the discharge process in the GDTs for sufficient amount of time can be large enough to damage surge-sensitive protected circuits. For GDTs with a considerably high initial over-voltage value, we should limit the peak voltage using a TVS or filter. As for ZnO varistors, even though their performance for voltage restriction is excellent, their applications in high-frequency commnuication circuits have been limited because of higher internal capacitance when compared to the GDTs. In order to develop a surge protector for commnuication applications by taking advantages of these two devices, we built a combination circuit that connects a GDT and a ZnO varistor along with a choke coil in common and differential modes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurements at each step. The experiment results show that the surge voltage restriction with the choke coil is more effective in 100 [kHz] RingWave voltage than in lightning impulse voltage.

  • PDF

A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch (상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

Improvement on Moment Resistance of a Concealed Timber Post Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.444-451
    • /
    • 2013
  • In this paper, experimental results were presented on the moment resistance of a concealed timber post base joint aimed at replacing in a modern design introduced lately the wood to wood joints used in the traditional Korean timber house - Hanok. Preliminary results showed that the original configuration of the joint offers a limited moment resistance and a low ductility and energy dissipation. In an attempt to mitigate those limitations without undergoing major changes in the connector, three new configurations were proposed and investigated. Motivated by the wish to prevent the early failure in welds, a first approach consists in directly bolting the connector's upper plate to lower the stress on the weak welds. Alternatively, another approach focused on increasing the strength of these welds by extending their length to the full width of the metal wings. Finally, a third configuration investigated the effect of those two approaches combined. In conclusion, reinforcing the welds found out to be the best option among the presented ones. As a result, this connector considered to show proper ability for use in earthquake-resistant structures with suited lateral-resistant structural elements.

  • PDF