• Title/Summary/Keyword: Combined Multi-sensor

Search Result 60, Processing Time 0.022 seconds

Human Action Recognition Using Pyramid Histograms of Oriented Gradients and Collaborative Multi-task Learning

  • Gao, Zan;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.483-503
    • /
    • 2014
  • In this paper, human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning is proposed. First, we accumulate global activities and construct motion history image (MHI) for both RGB and depth channels respectively to encode the dynamics of one action in different modalities, and then different action descriptors are extracted from depth and RGB MHI to represent global textual and structural characteristics of these actions. Specially, average value in hierarchical block, GIST and pyramid histograms of oriented gradients descriptors are employed to represent human motion. To demonstrate the superiority of the proposed method, we evaluate them by KNN, SVM with linear and RBF kernels, SRC and CRC models on DHA dataset, the well-known dataset for human action recognition. Large scale experimental results show our descriptors are robust, stable and efficient, and outperform the state-of-the-art methods. In addition, we investigate the performance of our descriptors further by combining these descriptors on DHA dataset, and observe that the performances of combined descriptors are much better than just using only sole descriptor. With multimodal features, we also propose a collaborative multi-task learning method for model learning and inference based on transfer learning theory. The main contributions lie in four aspects: 1) the proposed encoding the scheme can filter the stationary part of human body and reduce noise interference; 2) different kind of features and models are assessed, and the neighbor gradients information and pyramid layers are very helpful for representing these actions; 3) The proposed model can fuse the features from different modalities regardless of the sensor types, the ranges of the value, and the dimensions of different features; 4) The latent common knowledge among different modalities can be discovered by transfer learning to boost the performance.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

The Development of Gamma Energy Identifying Algorithm for Compact Radiation Sensors Using Stepwise Refinement Technique

  • Yoo, Hyunjun;Kim, Yewon;Kim, Hyunduk;Yi, Yun;Cho, Gyuseong
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Background: A gamma energy identifying algorithm using spectral decomposition combined with smoothing method was suggested to confirm the existence of the artificial radio isotopes. The algorithm is composed by original pattern recognition method and smoothing method to enhance the performance to identify gamma energy of radiation sensors that have low energy resolution. Materials and Methods: The gamma energy identifying algorithm for the compact radiation sensor is a three-step of refinement process. Firstly, the magnitude set is calculated by the original spectral decomposition. Secondly, the magnitude of modeling error in the magnitude set is reduced by the smoothing method. Thirdly, the expected gamma energy is finally decided based on the enhanced magnitude set as a result of the spectral decomposition with the smoothing method. The algorithm was optimized for the designed radiation sensor composed of a CsI (Tl) scintillator and a silicon pin diode. Results and Discussion: The two performance parameters used to estimate the algorithm are the accuracy of expected gamma energy and the number of repeated calculations. The original gamma energy was accurately identified with the single energy of gamma radiation by adapting this modeling error reduction method. Also the average error decreased by half with the multi energies of gamma radiation in comparison to the original spectral decomposition. In addition, the number of repeated calculations also decreased by half even in low fluence conditions under $10^4$ ($/0.09cm^2$ of the scintillator surface). Conclusion: Through the development of this algorithm, we have confirmed the possibility of developing a product that can identify artificial radionuclides nearby using inexpensive radiation sensors that are easy to use by the public. Therefore, it can contribute to reduce the anxiety of the public exposure by determining the presence of artificial radionuclides in the vicinity.

Multi-sensor Intelligent Robot (멀티센서 스마트 로보트)

  • Jang, Jong-Hwan;Kim, Yong-Ho
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • A robotically assisted field material handling system designed for loading and unloading of a planar pallet with a forklift in unstructured field environment is presented. The system uses combined acoustic/visual sensing data to define the position/orientation of the pallet and to determine the specific locations of the two slots of the pallet, so that the forklift can move close to the slot and engage it for transport. In order to reduce the complexity of the material handling operation, we have developed a method based on the integration of 2-D range data of Poraloid ultrasonic sensor along with 2-D visual data of an optical camera. Data obtained from the two separate sources complements each other and is used in an efficient algorithm to control this robotically assisted field material handling system . Range data obtained from two linear scannings is used to determine the pan and tilt angles of a pallet using least mean square method. Then 2-D visual data is used to determine the swing angle and engagement location of a pallet by using edge detection and Hough transform techniques. The limitations of the pan and tilt orientation to be determined arc discussed. The system developed is evaluated through the hardware and software implementation. The experimental results are presented.

  • PDF

Research Regard to Necessity of Smart Water Management Based on IoT Technology (IoT 기술을 활용한 스마트 물관리 필요성에 관한 연구)

  • Choi, Young Hwan;Kim, Yeong Real
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.11-18
    • /
    • 2017
  • The Objective of this Study is to Prove the Effectiveness of a Smart Water Management(SWM) Technology. The SWM Technology can Reduce the Production Cost using Internet of Thing(IoT) Technology that Utilizes Remote Metering of Consumer's Water usage and Reduce the Leakage of Supply Facilities. The SWM Demonstration Model Installed a Remote Water Leakage Sensor, Smart Metering and Micro Multi Sensor in Water Supply Facility, and Provided Real-Time Monitoring of the Operation Status. Consumers can be Provided the usage of Tap Water and the Water Puality through a Smart Phone Application. At this Time, we Surveyed Whether Consumers save the Tap Water or Drinking Directly using the Tap Water usage Information. Also, this Study is to Verify the Degree of Improvement of Water Supply Rates and Drinking Water Rate, and to Decrease Consumer's Complaints, Operating Costs, and Water Consumption by the SWM Technology. It is also Established a SWM Model Combined with the IoT Sensor at Supply Facilities, operator monitoring system and explored recovery solution detected events. It means the upbringing of the domestic water industry by developing the related technologies and spreading the SWM to advanced levels.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • Sim, Kwee-Bo;Byun, Kwang-Sub;Park, Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.287-292
    • /
    • 2003
  • The ability of robot is being various and complex. The robot is utilizing distance, image data and voice data for sensing its circumstance. This paper suggests the 2-layer fuzzy control as the algorithm that control robot with various sensor information. In a obstacle avoidance, it utilizes many range finders and classifies them into 3parts(front, left, right). In 3 sub-controllers, the controller executes fuzzy conference. And then it executes combined control with a combination of outputs of 3 sub-controllers in the second step. The text compares the 2-layer fuzzy controller with the hierarchical fuzzy controller that has analogous structure. And the performance of the 2-layer fuzzy controller is confirmed by application this controller to robot following, simulation to each other and real experiment.

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

A Seamless Positioning System using GPS/INS/Barometer/Compass (GPS/INS/기압계/방위계를 이용한 연속 측위시스템)

  • Kwon, Jay-Hyoun;Grejner-Brzezinska, D.A.;Jwa, Yoon-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.47-53
    • /
    • 2006
  • In this contribution, an integration of seamless navigation system for the pedestrian is introduced. To overcome the GPS outages in various situations, multi-sensor of GPS, INS, electronic barometer and compass are considered in one Extented Kalman filter. Especially, the integrated system is designed for low-cost for the practical applications. Therefore, a MEMS IMU is considered, and the low quality of the heading is compensated by the electronic compass. In addition, only the pseudoranges from GPS measurements are considered for possible real-time application so that the degraded height is also controlled by a barometer. The mathematical models for each sensor with systematic errors such as biases, scale factors are described in detail and the results are presented in terms of a covariance analysis as well as the position and attitude errors compared to the high-grade GPS/INS combined solutions. The real application scenario of GPS outage is also investigated to assess the feasible accuracy with respect to the outage period. The description on the current status of the development and future research directions are also stated.

  • PDF