• Title/Summary/Keyword: Combined Loading

Search Result 596, Processing Time 0.029 seconds

Green's Function of Cracks in Piezoelectric Material (압전재료 내의 균열에 대한 그린함수)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

Effects of Hardening Models on Cyclic Deformation Behavior of Tensile Specimen and Nuclear Piping System (인장 시편 및 원자력 배관계의 반복 변형거동에 미치는 경화 모델의 영향)

  • Jeon, Da-Som;Kang, Ju-Yeon;Huh, Nam-Su;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Recently there have been many concerns on structural integrity of nuclear piping under seismic loadings. In terms of failure of nuclear piping due to seismic loadings, an important failure mechanism is low cycle fatigue with large cyclic displacements. To investigate the effects of seismic loading on low cycle fatigue behavior of nuclear piping, the cyclic behavior of materials and nuclear piping needs to be accurately estimated. In this paper, the non-linear finite element (FE) analyses have been carried out to evaluate the effects of three different cyclic hardening models on cyclic behavior of materials and nuclear piping, such as isotropic hardening, kinematic hardening and combined hardening.

Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading (기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan;Nah, Hwan-Sean;Kim, Sang-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

A parametric investigation on the hysteretic behaviour of CFT column to steel beam connections

  • Esfandyary, R.;Razzaghi, M.S.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.205-228
    • /
    • 2015
  • The results of a numerical investigation pertaining to the hysteretic behaviour of concrete filled steel tubular (CFT) column to I-beam connections are discussed in detail. Following the verification of the numerical results against the available experimental tests, the nonlinear finite element (FE) analysis was implemented to evaluate the effects of different parameters including the column axial load, beam lateral support, shape and arrangement of stiffeners, stiffness of T-stiffeners, and the number of shear stiffeners. Pursuing this objective, an external CFT column to beam connection, tested previously, was selected as the case-study. The lateral forces on the structure were simulated, albeit approximately, using an incremental cyclic loading reversal applied at the beam tip. The results were compared in terms of hysteretic load-displacement curves, stress distributions in connection, strength, rotation, and energy dissipation capacity. It was shown that external T-stiffeners combined with internal shear stiffeners play an important role in the hysteretic performance of CFT columns to I-beam connections.

A Method of ROL Improvement for the Motor Operated Gate Valve Operating in the High Differential Pressure Condition (고차압에서 운전되는 모터구동게이트밸브의 부하율 향상 방안)

  • Kim, D.W.;Park, S.G.;Hong, S.Y.;Yooh, S.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.562-567
    • /
    • 2003
  • This paper presents the method of Rate of Loading(ROL) improvement for the Motor Operated Gate Valve operating in high differential pressure condition. The character of ROL and Stem Factor is analyzed. Static test and dynamic test were performed and acquired the diagnosis signal for the valve closing stroke. The result of this study is the modification of stem factor is very important factor for the ROL improvement. In order to obtain the same value of dynamic test thread friction coefficient stem and stem nut should be combined appropriately.

  • PDF

Backward Control Simulation of Tractor-Trailer Using Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전알고리즘을 이용한 트랙터-트레일러의 후진제어 시뮬레이션)

  • 조성인;기노훈
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-94
    • /
    • 1995
  • When farmer loads and unloads farm products with a trailer, linked to a tractor, the tractor-trailer is backed up to the loading duck. However, travelling backward is not easy and takes a time for even skilled operators. Therefore, unmanned backing up is necessary to save the effort. A backward controller of tractor-trailer was simulated using fuzzy logic and genetic algorithms. Operators drive the tractor-trailer back and forth several times for backing up to the loading duck. As the operators did it, a backward controller was designed using fuzzy logic. And genetic algorithms was applied to improve the performance of the backward controller. With the strings coded with the fuzzy membership functions, genetic operations were carried out. After 30 generations, the best fitted fuzzy membership functions were found. Those membership functions were used in the fuzzy backward controller. The fuzzy controller combined with genetic algorithms showed the better results than the fuzzy controller did alone.

  • PDF

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.