• Title/Summary/Keyword: Combined Aggregates

Search Result 53, Processing Time 0.025 seconds

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production (I) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발( I ))

  • Jung, Won-Kyong;Hwang, Yun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • Steel slag is being recycled into industrial by-products for civil generated inevitably in the seasonal course, road and cement raw materials. However, the field of recycling most of the bottom portion is concentrated in the areas that are required to take advantage of the situation in various fields taking advantage of the steel slag. But various studies to take advantage of the steel slag as aggregate for concrete made for limiting slag was a situation that most of the studies are incomplete research on the suitability of as aggregate for concrete practical relates to an expandable suppressed. In this study, the separation of the slag aggregate according to the production methods to assess the feasibility aggregate for concrete aggregates, including through Steel making slag, a total of seven kinds of steel slag aggregate. Studies show that ordinary concrete, steel slag aggregate for aggregate and on the equally to take advantage of grading, chloride content standards such as to what is lacking, although appropriate aggregate of concrete include the deployment of only in special sectors through the combination was assessed to have a very high.

Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates (석탄가스화 용융슬래그를 잔골재로 치환한 콘크리트의 공학적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.194-201
    • /
    • 2019
  • This study analyzed the properties of concrete depending on the coal gasification slag(CGS) contents in order to examine the applicability of CGS as the fine aggregate for concrete. Experimental results, trended that the slump and slump flow increased with increasing CGS contents, and air contents has decreased. Evaluation index for segregation of normal strength concrete(EISN) is showed was good from CGS 25% when using crushed sand A(CSa) and CGS 50% when using mixed sand(MS). The compressive strength decreased with increasing CGS contents when CSa was used. However, when MS was used, the maximum value was CGS 50% due to parabolic tendency. Depending on fine aggregates type, compared with compressive strength of CSa was about 8% higher than that of MS, and depending on the use or unuse of CGS, more advantageous at higher strength than low strength. As a result of relative performance study on the quality of concrete according to the CGS contents, it is considered that CGS can be positively contributed to enhancement of workability and strength development when mixed with fine aggregate around 25~50%.

The etiologic factor of senile cataract and mechanism of occurance of diabetic cataract (노인성 백내장의 원인과 당이 백내장 발생에 미치는 영향에 대한 고찰)

  • Choi, Hae Jung;Chen, Ko Hsien
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • The most common cause of blindness is cataract. The possible causes, radiation, sugar, drugs, trauma, nutrition, congenital, secondary to eye disease etc. Generally, the opacification of the lens are the result fa oxidation of the lens fibers. The basis for lens transparency is the structural integrity of lens fibers. Opacities were occur if there is a significant amount of high molecular weight protein aggregates. If Ca ions combined with lens ${\alpha}$-crystallin proteins, the lens fibers were aggregated by high molecular weight proteins and the lens were opacified. If Ca ions detached from lens ${\alpha}$-crystallin proteins, the lens fibers were aggregated by low molecular weight proteins and the lens were re-cleared. We need to find out the variety of factors can initiated the process of age-related cataract. And to understanding the mechanism how the various kind, of diabetic cataracts occur.

  • PDF

Crystal Chemistry and Paragenesis of Aluminum Sulphates from Mudstones of the Yeonil Group (I): basaluminite, hydrbasaluminite, and metabasaluminite (연일층군 이암에서 산출되는 알루미늄 황산염 광물의 결정화학 및 생성 (I): 배사알루미나팅, 하이드로베사알루미나이트 및 메타배사알루미나이트)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • In Pohang area, basaluminite accompanying a little amounts of hydrobasalumnite, super-genetically occurs as whitish cryptocrystalline (2-4 $\mu\textrm{m}$) clay-like aggregates in the vicinity of altered carbonate concretions embedded within mudstones of the Tertiary Yeonil Group. A hydrobasaluminite changed readily into a basaluminite at room temperature in air, and, in turn, into a metabasaluminite when heating to 150$^{\circ}$~30$0^{\circ}C$. For the basaluminite, a monoclinic unit-cellparameters (a=14.845$\AA$, b=10.006$\AA$, c=11.082$\AA$, $\beta$=122.15$^{\circ}$) were calculated by X-ray powder diffraction data. Its basal reflections (001 and 002) are XRD analyses strongly indicate that the aluminum sulphate mineral has a layer structure and, at least, three types of water, i.e., (1) interlayer water (9.0 wt %), (2) crystal water (8.0 wt %), and (3) structural water (19.0 wt %). may present in its lattice. Based on TG-DTG data combined with EDS and IR analyses, a new chemical formula of Al5SO4(OH)134H2O was given to the basaluminite. Field occurrence and stable isotope data ($\delta$18O, $\delta$D, $\delta$34S) for the basaluminite seem to reflect that it was formed by the leached meteoric solution from surrounding mudstones during or after uplifting. An interaction of the acid solution with carbonate concretion and the resultant local neutralization of the fluid rich in Al3+ and SO42- are major controls on the basaluminite formation.

  • PDF

An Admission Control for End-to-end Performance Guarantee in Next Generation Networks (Next Generation Networks에서의 단대단 성능 보장형 인입제어)

  • Joung, Jin-Oo;Choi, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1141-1149
    • /
    • 2010
  • Next Generation Networks (NGN) is defined as IP-based networks with multi-services and with multi-access networks. A variety of services and access technologies are co-existed within NGN. Therefore there are numerous transport technologies such as Differentiated Services (DiffServ), Multi-protocol Label Switching (MPLS), and the combined transport technologies. In such an environment, flows are aggregated and de-aggregated multiple times in their end-to-end paths. In this research, a method for calculating end-to-end delay bound for such a flow, provided that the information exchanged among networks regarding flow aggregates, especially the maximum burst size of a flow aggregate entering a network. We suggest an admission control mechanism that can decide whether the requested performance for a flow can be met. We further verify the suggested calculation and admission algorithm with a few realistic scenarios.

An Experimental Study of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 실험적 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • An experimental study of composite beam with perforated fiber reinforced polymer(FRP) plank as a permanent formwork and the tensile reinforcement was performed. A combined formwork and reinforcement system can facilitate rapid construction of concrete members since no conventional formwork is needed, which requires time consuming assembly and dismantling. In order for a smooth FRP plank to act compositely with the concrete, the surface of the FRP needs to be treated to increase its bond properties. Aggregates were bonded to the FRP plank using a commercially available epoxy and perforated web of plank. No additional flexural or shear reinforcement was provided in the beams. For comparison, two control specimens were tested. One control had no perforated hole in the web of FRP plank and the other had internal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. This study demonstrates that the perforated FRP plank has the potential to serve as a permanent formwork and reinforcing for concrete beam.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

The Inhibition Effect of Alkali-Silica Reaction in Concrete by Pozzolanic Effect of Metakaolin (메타카오린의 포조란 효과에 의한 콘크리트 내 알칼리-실리카 반응 억제 효과)

  • Lee Hyomin;Jun Ssang-Sun;Hwang Jin-Yeon;Jin Chi-Sub;Yoon Jihae;Ok Soo Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.277-288
    • /
    • 2004
  • Alkali-silica reaction (ASR) is a chemical reaction between alkalies in cement and chemically unstable aggregates and causes expansion and cracking of concrete. In the Present study, we studied the effects of metakaolin, which is a newly introduced mineral admixture showing excellent pozzolainc reaction property, on the inhibition of ASR. We prepared mortar-bars of various replacement ratios of metakaolin and conducted alkali-silica reactivity test (ASTM C 1260), compressive strength test and flow test. We also carefully analyzed the mineralogical changes in hydrate cement paste by XRD qualitative analysis. The admixing of metakaolin caused quick pozzolanic reaction and hydration reaction that resulted in a rapid decrease in portlandite content of hydrated cement paste. The expansion by ASR was reduced effectively as metakaolin replaced cement greater than 15%. This resulted in that the amounts of available portlandite decreased to less than 10% in cement paste. It is considered that the inhibition of ASR expansion by admixing of metakaolin was resulted by the combined processes that the formation of deleterious alkali-calcium-silicate gel was inhibited and the penetration of alkali solution into concrete was retarded due to the formation of denser, more homogeneous cement paste caused by pozzolanic effect. Higher early strength (7 days) than normal concrete was developed when the replacement ratios of metakaolin were greater than 15%. And also, late strength (28 days) was far higher than normal concrete for the all the replacement ratios of metakaolin. The development patterns of mechanical strength for metakaolin admixed concretes reflect the rapid pozzolanic reaction and hydration properties of metakaolin.