• Title/Summary/Keyword: Combine Harvester

Search Result 42, Processing Time 0.026 seconds

A Study on Failure Characteristics and Reliability Prediction of the Rice Combine Harvester (콤바인 수확기(收穫機)의 고장특성(故障特性) 및 신뢰성(信賴性) 예측(豫測)에 관(關)한 연구(硏究))

  • Kim, H.K.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.76-85
    • /
    • 1986
  • This study was intended to examine the failure characteristics and breakdowns of the head-fed type combines generally used on farms. The failure distribution was assumed to follow Weibull distribution function and the Weibull parameters of the major parts, units and combine as whole were estimated by using the data collected in a survey. A computer program for the estimation of the Weibull parameter was developed. Monte Carlo method was used in predicting the time between failures. The results of study may be summarized as follows: 1. The number of failures per combine was 4.83 times per year and 0.3 times per hectare of combines of different ages. 2. According to the Kolmogorov-Smirnov test method, it was proved that the Weibull distribution function is well fitted to the characteristics of the failure and breakdowns of combines. 3. Weibull parameters of failure distribution of the combine as a whole were estimated to give the shape parameter ${\beta}$=1.3089 and the scale parameter ${\alpha}$=105.2409. The combining area with 80% reliability was 1.1 ha, and the probability of operating the combine without any failure for a year, was $2.76{\times}10^{-4}$. 4. The mean time between failures (MTBF) of the combines was predicted to be 3.2 ha of operation, which corresponds to 32 hours of operation.

  • PDF

Sorghum Harvesting Using a Head-feeding Type Rice Combine

  • Jun, Hyeon Jong;Choi, Il Su;Kang, Tae Gyoung;Choi, Yong;Choi, Duck Kyu;Lee, Choung Keun;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.296-302
    • /
    • 2018
  • Purpose: The aim of this study was to determine appropriate threshing and selection conditions for sorghum harvesting using a rice combine-harvester. Methods: Sorghum harvesting performance was tested using an actual rice combine. Through this test, the grain loss rate and the composition of crops according to the engine and fan speeds of the combine were investigated. Furthermore, the optimal threshing and selection conditions were determined by carrying out a harvest test based on the opening size factor of the concave in a test field. Results: The grain loss rate for the sorghum using a concave ($18{\times}18mm$) of the rice combine was the lowest at 0.1% at a chaffer angle of $40^{\circ}$, engine speed of 2000 rpm, and fan speed of 20 m/s, but the sorting sieve clogged frequently. Furthermore, as the engine speed and fan speed increased, the grain loss rate also increased. The sorghum harvesting test results of the combine according to the concave opening size showed that the grain loss rate was 0.5% at a driving speed of 0.5 m/s, with a concave opening diameter of 13 mm, a chaffer angle of $40^{\circ}$, a concave sieve oscillation frequency of 4.8 Hz, a fan speed of 20 m/s, and an engine speed of 2000 rpm. Conclusions: Findings showed that sorghum could be harvested using a head feeding rice combine.

Analysis and Reduction Method of Noise from Head of a Combine Harvester (콤바인 전처리부의 소음 분석과 감소 방안)

  • Kim, Ho-Jung;Park, Young-Joon;Shim, Sung-Bo;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2007
  • This study was conducted to measure and analyze the noise from a combine head. The combine head, comprised of a cutting knife assembly, pick-up chains, horizontally conveying chains and vertically conveying chains, had an overall sound level of 101 dBA. The sound levels of each component were, respectively, 98.3 dBA for the cutting knife assembly, 88.9 dBA for the pick-up chains, 79.8 dBA for the horizontally conveying chains and 86.3 dBA for the vertically conveying chains, being equivalent to 54.4%, 18.4%, 6.5% and 13.7% of the overall head noise. The main cause of the head noise was considered the impacts that the joint of the cutting knife assembly made with frame when it oscillated. The impact sound was also generated when the chain lug collided with the chain case. To reduce these impact sound, anti-vibration rubbers were installed on the knife assembly joint and the chain cases. It reduced the head noise by 4 dBA but the overall noise level of the combine head was still high. In order to protect the combine operators more effectively from the noise, a safety cab needs to be installed on the combine.

A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission(III) -Computer Simulation- (V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(III) -컴퓨터 시뮬레이션-)

  • Choe, Gyu-Hong;Ryu, Gwan-Hui
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 1992
  • In order to operate a combine harvester at the optimum conditions and maximum performance, a forward speed control system(FSCS) was designed and develped. The FSCS consisted of engine, continuously variable V-belt transmission, threshing unit, traveling unit, detecting unit, and controller. Each components of the system were mathematically modeled. By a computer simulation, the effects of control parameters such as hydraulic piston speed, speed ratio, dead band of engine speed on the system performance were analysed, and the optimum control conditions were identified. The system appeared to be the most stable at the hydraulic piston speed of 10.6mm/s and the speed ratio of 0.4. The proper dead band of engine speed appeared to be 30rpm through the simulation and verification tests.

  • PDF

A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Combine Load Characteristics- (V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(I))

  • Choi, K.H.;Ryu, K.H.;Cho, Y.K.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.124-132
    • /
    • 1991
  • This study was carried out to obtain the information needed in the development of forward speed control system and the improvement of combine performance. The effects of variety, grain moisture content and forward speed on the combine load characteristics were investigated through experiments. The results of this study are summarized as follows. 1. A data acquisition system was developed to measure the engine speed and the torques and speeds of the threshing cylinder, dean-grain auger and tailings-return auger. The system consisted of transducers, signal conditioner, interface board and microcomputer. The system accuracy is better than ${\pm}2.3%$ full scale. 2. Linear regression equations were obtained for the torque, speed and power requirement of threshing cylinder for different paddy varieties, grain moisture contents and feed rates. 3. The maximum value of relative frequency for threshing cylinder torque decreased as the increase in feed rate and moisture content. The range of torque fluctuation was 1.2~3.7 and 1.2~1.9 times the average and maximum torque, respectively. The maximum value of power spectrum density (PSD) appeared to be about 11 Hz regardless of paddy variety, grain moisture content and feed rate. 4. The speed of tailings return thrower decreased rapidly at below 900rpm, and it fell to near zero about 3 seconds after that time. When the travelling of combine harvester was stopped immediately after sensing the overload, it took about 7 seconds for a full recovery of the no-load speed of tailings return thrower.

  • PDF

STRAW HARVESTER FOR ANIMAL FEED

  • Kim, Sang-Hun;Shin, Beom-Soo;Nam, Sang-Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.967-976
    • /
    • 1996
  • Straw and other fibrous by-products are inevitably produced during cereal production and have traditionally been used for many purposes including feeding animals . The potential of these by -products as a feed resource for ruminants is being increasingly appreciated (FAO , 1977). In the future, the amount of cereals fed to farm animals will have to be reduced and livestock will have to rely more on by-products such as straw. The method of animal production can be classified by the major portion of feed. One is animal forage and the other is grains. In Korea , livestock farmers normally depend more than 70% upon grains for the feed stuff. The livestock production system causes the unbalance of nutrition, and results in low productivity of animal farming. In many livestock farms in Korea the rice straw is using as a major forage and the amount of rice straw fed takes 46% of total amount of required forages. Especially the rice straw is mainly using during spring, fall and winte season. However, there are still lots of problems to solved such as harvesting cost, transportation between rice farm ad livestock farm, and quality loss during drying and storage . Therefore the mechanization of straw harvesting is urgently needed to use the renewable agricultural by-products and to overcome the shortage of animal forage. The objective of this research is to develope a straw harvester with new concept which can solve the problems of the quality loss and the labor cost during drying in a field, collecting , and storage. The developed straw harvester is self-propelled machine rebuilt by rice combine and equipped with the pick-up device, the macerater and the mat-forming device.

  • PDF

Pneumatic Separation on Separating Unit of a Combine Harvester (콤바인 선별실(選別室)의 기류선별(氣流選別)에 관한 연구(硏究))

  • Chung, C.J.;Nam, S.I.;Joo, B.C.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.32-43
    • /
    • 1988
  • This study was attempted to investigate the pneumatic separation on separating unit of a combine harvester. The aerodynamic characteristics of threshed materials were analyzed by experiments. The air velocity distribution within the separation chamber was measured for various speeds of the winnower and suction fans to find out the operational and design conditions of the separating unit which would serve for reducing the grain loss from chaff outlet. The results of study arc summarized as follows: 1. Based on the separation curve of threshed materials analyzed, it was shown that three different kind. of materials-kernels, straw chaff, and leaf chaff were as a whole able to be separated pneumatically, regardless of varieties. However, a small amount of the separation grain loss may be expected to occur if the complete separation between kernels and straw chaff would be undertaken because some portion of their separation curve were overlapping. 2. The analysis of air velocity distribution showed that the separation chamber may be divided into two regions, the discharging and separating. The air velocity of the discharging region was 5-15 m/s and that of the separating region 2-5 m/s. 3. The air movement of the separation chamber may be a turbulence flow, being its speed became greater as it moves from the left to the right section of the separation chamber. The equi-speed line. of air flow had a steep gradient in between the discharging and the separation regions. The air velocity in the discharging region was much higher than the terminal velocity of kernels, because of which those kernels appearing in the region could be possibly exhausted as the grain loss from the chaff outlet. 4. The motion trajectory of threshed material in the separating region was dominantly affected by the winnower fan, on the other hand, its motion in the discharging region was affected by suction fan. 5. The grain loss from the chaff outlet was affected greatly by the winnower fan and the trace of kernel movement. It was observed that the optimum working speed to give minimum grain loss from chaff outlet for the combine tested should be maintained at 950~1,150 rpm for the winnower fan and 1,850 rpm for the suction fan. 6. It was shown that a large portion of grain loss from chaff outlet may occur when the kernels may bump against a portion of separation chamber wall and those kernels thus scattered into the discharging region were sucked by the suction fan. It was accordingly recommended that a new design of the wall of separation chamber so as to bump down kernels may be necessary to reduce grain loss from the chaff outlet.

  • PDF

Analysis of Utilization and Maintenance of Major Agricultural machinery (Tractor, Combine Harvester and Rice Transplanter) (핵심 농기계(트랙터, 콤바인 및 이앙기) 이용 및 수리실태 분석)

  • Hong, Sungha;Choi, Kyu-hong
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.292-299
    • /
    • 2018
  • In a survey in which farmers were asked about their levels of satisfaction with agricultural machines, Japanese products scored higher than local products by 1.2, 1.3, and 1.4 times for tractors, combine harvesters, and rice transplanter, respectively. Japanese products corresponded to generally high satisfaction levels in terms of operating performance, operability, frequency of breakdowns, and durability, excluding sales price and after-sales services. Effective countermeasures through quality improvement are therefore necessary for Korean products. Furthermore, a survey of dealers showed that the components and consumables for core agricultural machines had high frequencies of breakdowns and repairs. Four major components of tractors represented 85.3% of all breakdowns and repairs, five components of combine harvesters represented 89.6%, and three components of rice transplanters represented 80.5%. Moreover, a comparison of the technological levels between local and imported machines showed that the local machines' levels were at 60-100% for tractors, 70-100% for combine harvesters, and 70-95% for rice transplanters. Small and mid-sized tractors, 4 interrow combine harvesters, and 6 interrow rice transplanters showed similar levels of technology. The results of the analysis suggest that action is urgently needed at a policy level to establish an agricultural machinery component research center for the development, production, and supply of commonly-used components, with the participation of manufacturers of agricultural machines and components, in order to enhance the competitiveness of local manufacturers and to revitalize the agricultural machine market.

Development of a Potato Harvester for Tractors (트랙터용(用) 감자수확기(收穫機)의 개발(開發))

  • Kang, W.S.;Shin, Y.B.;Kim, S.H.;Hahm, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • The purpose of this study was to develope a potato combine which can be attached to and controlled by three-point hitch of tractors. A vibrating mechanism was designed and constructed to dig potatoes, and to evaluate the effects of vibration on the potato harvesting performance of the test machine, potato separation from soil, harvesting loss, and damage to the potatoes. Three types of potato pick-up mechanisms were constructed and tested. Digging performance and material flow on the blade were improved as the vibrating amplitude and frequency increased and as the travel speed decreased. The sum of unrecovered and damaged potatoes was up to 7.8%. Three pick-up devices were not found to be useful by failing to elevate about 30% of dug potatoes to a given height.

  • PDF