• Title/Summary/Keyword: Combat Vehicle

Search Result 116, Processing Time 0.026 seconds

Design of an Autonomous Air Combat Guidance Law using a Virtual Pursuit Point for UCAV (무인전투기를 위한 가상 추적점 기반 자율 공중 교전 유도 법칙 설계)

  • You, Dong-Il;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.199-212
    • /
    • 2014
  • This paper describes an autonomous air combat guidance law using a Virtual Pursuit Point (VPP) in one-on-one close engagement for Unmanned Combat Aerial Vehicle (UCAV). The VPPs that consist of virtual lag and lead points are introduced to carry out tactical combat maneuvers. The VPPs are generated based on fighter's aerodynamic performance and Basic Fighter Maneuver (BFM)'s turn circle, total energy and weapon characteristics. The UCAV determines a single VPP and executes pursuit maneuvers based on a smoothing function which evaluates probabilities of the pursuit types for switching maneuvers with given combat states. The proposed law is demonstrated by high-fidelity real-time combat simulation using commercial fighter model and X-Plane simulator.

A Study of Experimental Design for Unmanned Ground Vehicle Effectiveness Based on a Small Unit Combat Scenario (소부대 전투시나리오 기반의 UGV 효과분석 실험방안 연구)

  • Lee, Jaeyeong;Kim, Chongman;Park, Keonyoung;Kim, Junsoo;Sin, Sunwoo;Pyun, Jaijeong;Bae, Sungmin
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.591-606
    • /
    • 2014
  • Purpose: The purpose of this study is to design an experimental simulation model for evaluating the UGV(Unmanned Ground Vehicle) effectiveness in a small unit combat scenario. Methods: We design and build a simulation model to evaluate the combat effectiveness of UGV in a small unit combat scenario. In order to build a simulation model, we used AnyLogic software tool which has functional advantages to describe agent-based simulation model. As for the combat scenario, we applied the typical engagement of mechanized unit equal or lower than battalion level. Analysis process follows the three phases. 1) Design an agent based conceptual medel in a small unit combat scenario. 2) Build a simulation medel using AnyLogic tool. 3) Analyze the simulation results and evaluate the UGV effectiveness. Results: The UGV effectiveness was measured and presented as a numeric values. Those numeric values were represented as a MOE(Measure of Effectiveness) which was the blue survival ratio. Conclusion: We developed an agent based simulation model which can provide a pattern of change how UGV effectiveness varied depending upon the number of UGV in a small unit combat scenario. We also found that the UGV effectiveness grows in the given scenario as the number of UGV increases.

Analysis of UGV Communication Effectiveness focused on Message Complexity (메시지 복잡도를 중심으로한 UGV 통신효과 분석)

  • Chang, YooSang;Shin, SunWoo;SEO, DaYoon;Lee, JaeYeong;Kim, ChongMan;Yoo, CheolWoo;BAE, SungMin
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.503-520
    • /
    • 2017
  • Purpose: In the near future, it is expected that UGV(unmanned ground vehicle) will be put into battle due to IT technology and unmanned technology development. In this study, we analyze the combat effectiveness considering communication effect where complex combat information and commands are transmitted. Methods: We use ABM(agent-based modeling) and wireless channel module which provides sophisticated communication effect through geographic information and UGV performance. And UGV combat simulation using wireless channel module is used to grasp the combat effectiveness according to the number of packets, which is a unit for storing all information and commands having high complexity. Results: The result of this study is to derive the optimal number of packets which does not decrease the combat effectiveness and the number of lost tanks. The number of packet increases, the survival ratio of our tanks are decreased. Conclusion: In this study, we reveal that the communication success or failure could affect the combat effectiveness. Also, it helps develope the standard communication protocol between UGVs and could be applied to analyze the cost effectiveness analysis in UGV combat environment.

Development of Multi Data Acquisition and Analysis Device for Tracked Vehicle Using SBC (SBC를 이용한 궤도차량의 다중데이터 획득 및 분석장치 개발)

  • Jeon, Ki-Hyun;Ha, Dong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.80-85
    • /
    • 2013
  • Recently it is becoming more common to apply vehicle electronics(Vetronics) based on information technology to improve the operability of the combat vehicles. Although the vehicle electronics system has been gradually developed, it is hard not only to design the reliable system which is a built-in multi-function but also to analyze the fault failure in the state of on-vehicle when failures occur. Therefore, It is required the data logging system like a aircraft's black box for the combat vehicles to enhance the reliability. In this paper, we developed the multi data acquisition and analysis device which is acquiring real-time data such as communication data, video data and voice data available for checking operational status of system and managing history. The performance of device has been proved on the vehicle.

Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle (롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발)

  • Yoo, Seunghoon;Park, Myunghwan;Hwang, Seongin;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

Architectural Model of Integrated Simulation Environment for the M&S Based Design of Unmanned Ground Combat Vehicle (M&S기반 무인지상전투차량 설계를 위한 통합모의실험환경 아키텍처모델)

  • Choi, Sang Yeong;Park, Jin Ho;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • M&S (Modeling & Simulation) based design is widely accepted for the development of the future weapon system with better performance in a cheaper and faster way. Integrated simulation environment (ISE) is needed for the M&S based design. On the ISE, system engineers can not only verify design options but also validate system requirements. In this paper, we propose architectural models of the integrated simulation environment (ISE) which incorporates mission effectiveness M&S (Modeling & Simulation), system performance M&S, the optimization model of integrated performances, digital mockup and virtual prototype. The ISE architectural models may be used to implement the ISE for the development of the future unmanned ground combat vehicle.

A Study on the Improvement of the Separation Phenomenon of Coolant Hose in the Tracked Combat Vehicle (전투차량 냉각수 호스 분리현상 개선에 관한 연구)

  • Kang, Tae-Woo;Shin, Hun-Yong;Ryu, Jeong-Min;Park, Kyung-Chul;Kim, Jae-Kyu;Lee, Hun-kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • In general, tracked combat vehicles require excellent output performance of a power unit system to drive on special terrains and in extreme environmental conditions. However, high temperature and pressure are readily applied to the coolant hose in the power unit of the vehicles during high-speed driving under extreme road and weather conditions. These driving conditions can cause the separation phenomenon of the coolant hose in the power unit and consequentially engine overheating during driving. Therefore, a newly designed decompression device for the coolant hose has been proposed and manufactured to solve these problems in the present study. To validate of the newly proposed decompression device, the input and output pressures were measured under the before- and after-improvement conditions using experimental methods for different engine RPMs. In addition, the pre-heater temperature was measured under both conditions. From the experimental results, we expect that the current investigation can help to improve the driving performance of tracked combat vehicles.

Rotational Drive-Versus-Quality and Video Compression-Versus-Delay Analysis for Multi-Channel Video Streaming System on Ground Combat Vehicles (지상 전투 차량을 위한 다채널 영상 스트리밍 시스템의 회전 구동 대비 품질과 압축 대비 지연 분석)

  • Yun, Jihyeok;Cho, Younggeol;Chang, HyeMin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The multi-channel video streaming system is an essential device for future ground combat vehicles. For the system, the application of digital interfaces is required instead of the direct analog method to support selectable multiple channels. However, due to the characteristics of the digital interfaces that require en/decoding and signal conversion, the system should support the ability to adapt to quality and delay requirements depending on how video data is utilized. To support addressed issue, this study designs and emulates the multi-channel compressed-video streaming system of ground combat vehicle's fire control system based on commercial standards. Using the system, this study analyzes the quality of video according to the rotational speed of the acquisition device and Glass-to-Glass (G2G) delay between video acquisition and display devices according to video compression rates. Through these experiments and analysis, this paper presents the design direction of the system having scalability on the latest technology while providing high-quality video data streaming flexibly.

Fire Power Analysis for Concept Exploration of Combat Vehicle (전투차량체계의 개념탐색을 위한 화력성능분석)

  • Lim, O-Kaung;Choi, Eun-Ho;Ryoo, Jae-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2009
  • At the stage conceptual design, combat vehicle is classified into three general categories of fire power, mobility and physical properties of system. The present research is restricted to fire power and its optimization. At the stage of conceptual designing of system, it is appropriate to consider major variables affecting fire power - including the weight of bullet, which exerts a direct influence on destroying effect, maximum range which takes long range firing in consideration. To estimate the maximum firing range, a simple interior ballistic and an exterior ballistic model were built by using the lumped parameter method, Le Duc method and point mass trajectory model. Design of experiment and regression analysis was used to derive simulations of fire power. Finally, response surface models were built and design variables were analyzed.

Development of Realtime Simulator for Multibody Dynamics Analysis of Wheeled Vehicle on Soft Soil (연약지반을 고려한 차량 실시간 시뮬레이터 개발)

  • Hong, Sup;Kim, Hyung-Woo;Cho, Yun-Sung;Cho, Hui-Je;Jung, Ji-Hyun;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.116-122
    • /
    • 2011
  • A realtime simulator using an explicit integration method is introduced to improve the solving performance for the dynamic analysis of a wheeled vehicle. Because a full vehicle system has many parts, the development of a numerical technique for multiple d.o.f. and ground contacts has been required to achieve a realtime dynamics analysis. This study proposes an efficient realtime solving technique that considers the wheeled vehicle dynamics behavior with full degrees of freedom and wheel contact with soft ground such as sand or undersea ground. A combat vehicle was developed to verify this method, and its dynamics results are compared with commercial programs using implicit integration methods. The combat vehicle consists of a chassis, double wishbone type front and rear suspension, and drive train. Some cases of vehicle dynamics analysis are carried out to verify the realtime ratio.