• Title/Summary/Keyword: Column section shape

Search Result 83, Processing Time 0.021 seconds

Numerical Analysis on Strength of Interior Flat Plate-Column Connections according to Column Section Shape (기둥 단면형상에 따른 플랫플레이트-기둥 접합부 강도에 관한 수치해석연구)

  • Kang Su Min;Kim Oak Jong;Lee Do Bum;Park Hong Gun;Chun Young Soo;Lee Hyun Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of column section shape on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, the column section shape has a serious effect on the behavior of the connections. As the length of the cross section of column in the direction of lateral load increases, the effective area and the shear strength at the sides providing the torsional resistance decrease considerably. Therefore the strength model for the flat plate-column connections should be modified by considering the effect of column section shape on the behavior of the connections.

  • PDF

A study on stiffness of flat-plate system according to column section shape (기둥단면형상에 따른 무량구조시스템 강성변화에 관한 연구)

  • Kang, Su-Min;Lee, Ji-Woong;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.314-317
    • /
    • 2006
  • In the present study, design methodologies for effective width of slabs in slab-column connections were evaluated in comparison with the experimental results on the full-scale slab-column connections. The design methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. Accordingly, the equation to calculate the effective width of slabs should be modified to reflect the effect of the change in the column section shape.

  • PDF

Stiffness Prediction of Flatplate System According to Column Section Shape (기둥단면 형상에 따른 무량판 구조시스템 강성예측)

  • Lee, Do-Bum;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.194-202
    • /
    • 2006
  • In the present study, stiffness prediction methodologies for flat-plate structures were evaluated in comparison with the experimental results on the full-scale slab-column connections of flat-plate structures. The methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. In the present study, the equation to calculate the effective width of slabs was modified to reflect the effect of the change in the column section shape.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

Buckling Strength of Box-Shape Column with Corner Rounding (모서리 곡률이 존재하는 상자형 단면 기둥의 좌굴)

  • 한금호;한택희;김기언;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.325-331
    • /
    • 2004
  • Generally, the buckling of thin-walled structures has studied for rectangular sections or circular sections. Rectangular sections have small stiffness and circular sections have large stiffness when they are compared with rectangular sections for local buckling. But both of them have similar stiffness to column buckling. Therefore in this paper, we are going to analyze the local buckling for the box section with rounded comer and compare with rectangular section. Also we confirm that the rounded comer section has larger local buckling strength than rectangular section.

  • PDF

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

An experimental study of the mechanical performance of different types of girdling beams used to elevate bridges

  • Fangyuan Li;Wenhao Li;Peifeng Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.563-571
    • /
    • 2023
  • Girdling underpinning joints are key areas of concern for the pier-cutting bridge-lifting process. In this study, five specimens of an underpinning joint were prepared by varying the cross-sectional shape of the respective column, the process used to treat the beam-column interface (BCI), and the casting process. These specimens were subsequently analyzed through static failure tests. The BCI was found to be the weakest area of the joint, and the specimens containing a BCI underwent punching shear failure. The top of the girdling beam (GB) was subjected to a circumferential tensile force during slippage failure. Compared to the specimens with a smooth BCI, the specimens subjected to chiseling exhibited more pronounced circumferential compression at the BCI, which in turn considerably increased the shear capacity of the BCI and the ductility of the structure. The GB for the specimens containing a column with a circular cross-section exhibited better shear mechanical properties than the GB of other specimens. The BCI in specimens containing a column with a circular cross-section was more ductile during failure than that in specimens containing a column with a square cross-section.