• Title/Summary/Keyword: Column reactor system

Search Result 55, Processing Time 0.029 seconds

Continuous rapid Production of Soy Sauce by Coimmobilized Mixed Culture system of Zygosaccharomyces rouxii and Candida versatilis using Air Bubble Column Reactor (Zygosaccharomyces rouxii와 Candida versatilis의 동시 고정화에 의한 Air Bubble Column Reactor에서 간장의 연속적 속성 생산)

  • 류병호
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • This study was designed to find out the rapid fermentation of soy sauce from koji hydrolyzates using air bubble column reactor packed with coimmobilized mixed culture system. Continuous ripid production was performed by coimmobilized Z. rouxiii BH-90 and C. versatilis BH-91. Coimmobilized cells of Zygosaccharomyces rouxii BH-90 and Candida versatilis BH-91 mixture cells in the column reactor produced 2.8% ethyl alcohol and 18mg/L 4-ethylguaiacol over 96 hours under the optimal conditions. Coimmobilized cells produced 2.30∼2.4% ethyl alcohol during 30 days, and decreased gradually from 40 days to 70 days. Also coimmobilized cells produced 4-ethylguaiacol at the constant rate of 16∼18mg/L and decreased gradually after 40 days. Final product of soy sauce contained 2.4% ethyl alcohol and 18mg/L 4-ethylguaiacol. However, amino acid compositions of soy sauce were consisted of predominantly glutamic acid, leucin, arginine, aspartic acid, Iysine and valine, which were more than 50% of total amino acid.

Characteristics of Organic Compounds Removal and Microbe Attachment in Packed Bed Column Reactor Using Surface-modified Media (표면개질 담체를 이용한 충전탑 반응기에서 유기물 제거 및 미생물 부착 특성)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was accomplished using packed bed column reactors that contain nonsurface-modified polypropylene media and surface-modified media from hydrophobic surface property into hydrophilic property by ion beam irradiation. The objectives of this research was investigated the characteristics of organic compounds removal and microbe attachment from sewage of school cafeteria in these reactors. In 736.8 mg/L of the average inflow $COD_{Cr}$ concentration the reactors with and without surface modification showed 81.8% and 70.3% of average $COD_{Cr}$ removal efficiencies, respectively, which proves the $COD_{Cr}$ removal efficiency of surface-modified media reactor is higher than that of nonsurface-modified media reactor. After 90 days, there were maximum differences between modified system and non-modified system. In that time the maximum removal efficiency of $COD_{Cr}$ was 96.5% in modified system and was 85.2% in non-modified system that showed removal efficiency of surface-modified media system is 11.3% higher than that of nonsurface-modified media system. The average removal efficiency of SS was 80.4% for the surface modified system and 61.6% for the non-modified system under same condition. Also, the reactor of surface-modified media has advantage on microbe attachment and biofilm formation.

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor

  • Chang, Young-C.;Park, Chan-Koo;Jung, Kweon;Kikuchi, Shintaro
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2010
  • We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

Production of Shikonin by A Hairy Root Culture of Lithospermum erythrorhizon

  • Seo, Weon-Taek;Park, Young-Hoon;Choe, Tae-Boo
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.41-45
    • /
    • 1992
  • Shikonin production was examined in a bubble column bioreactor system with the hairy roots of Lithosphermum erythrorhizon. The volumetric productivity was higher than those obtained from other reactor configurations with free or immobilized cells of the same cell line. The productivities of the bubble column reactor, with and without a product absorption trap, were 7.4 and 4.5 mg of shikonin/l/d, respectively. This indicated the importance of the product removal in the design and operation of the shikonin production system with hairy root culture.

  • PDF

Automatic Inspection of Reactor Vessel Welds using an Underwater Mobile Robot guided by a Laser Pointer

  • Kim, Jae-Hee;Lee, Jae-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1116-1120
    • /
    • 2004
  • In the nuclear power plant, there are several cylindrical vessels such as reactor vessel, pressuriser and so on. The vessels are usually constructed by welding large rolled plates, forged sections or nozzle pipes together. In order to assure the integrity of the vessel, these welds should be periodically inspected using sensors such as ultrasonic transducer or visual cameras. This inspection is usually conducted under water to minimize exposure to the radioactively contaminated vessel walls. The inspections have been performed by using a conventional inspection machine with a big structural sturdy column, however, it is so huge and heavy that maintenance and handling of the machine are extremely difficult. It requires much effort to transport the system to the site and also requires continuous use of the utility's polar crane to move the manipulator into the building and then onto the vessel. Setup beside the vessel requires a large volume of work preparation area and several shifts to complete. In order to resolve these problems, we have developed an underwater mobile robot guided by the laser pointer, and performed a series of experiments both in the mockup and in the real reactor vessel. This paper introduces our robotic inspection system and the laser guidance of the mobile robot as well as the results of the functional test.

  • PDF

KIER Liquefaction R & D's status (KIER 액화 기술 개발 현황)

  • Yang, Jung-Il;Yang, Jung Hoon;Lee, Ho-Tae;Chun, Dong Hyun;Kim, Hak-Joo;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.1-110.1
    • /
    • 2010
  • A bench scale slurry bubble column reactor (SBCR) with active-Fe based catalyst was developed for the Fischer-Tropsch synthesis (FTS) reaction. Considering the highly exothermic reaction heat generated in the bench scale SBCR, an effective cooling system was devised consisting of a U-type dip tube submerged in the reactor. Also, the physical and chemical properties of the catalyst were controlled so as to achieve high activity for the CO conversion and liquid oil ($C_{5+}$) production. Firstly, the FTS performance of the FeCuK/$SiO_2$ catalyst in the SBCR under reaction conditions of $265^{\circ}C$, 2.5 MPa, and $H_2/CO=1$ was investigated. The CO conversion and liquid oil ($C_{5+}$) productivity in the reaction were 88.6% and 0.226 $g/g_{cat}-h$, respectively, corresponding to a liquid oil ($C_{5+}$) production rate of 0.03 bbl/day. To investigate the FTS reaction behavior in the bench scale SBCR, the effects of the space velocity and superficial velocity of the synthesis gas and reaction temperature were also studied. The liquid oil production rate increased upto 0.057 bbl/day with increasing space velocity from 2.61 to 3.92 $SL/h-g_{Fe}$ and it was confirmed that the SBCR bench system developed in this research precisely simulated the FTS reaction behavior reported in the small scale slurry reactor.

  • PDF

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.