Browse > Article
http://dx.doi.org/10.5668/JEHS.2010.36.4.323

Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor  

Chang, Young-C. (Division of Applied Sciences, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology)
Park, Chan-Koo (Seoul Metropolitan Government Research Institute of Public Health and Environment)
Jung, Kweon (Seoul Metropolitan Government Research Institute of Public Health and Environment)
Kikuchi, Shintaro (Division of Applied Sciences, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology)
Publication Information
Journal of Environmental Health Sciences / v.36, no.4, 2010 , pp. 323-336 More about this Journal
Abstract
We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.
Keywords
Clostridium bifermentans DPH-1; dechlorination; tetrachloroethylene; monoculture; bioreactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamamoto, K., Fukushima, M., Kakutani, N. and Tsuruho, K. : Contamination of vinyl chloride in shallow urban river in Osaka, Japan. Water Research, 35, 561-566, 2001.   DOI   ScienceOn
2 Scholz-Muramatsu, H., Szewzyk, R., Szewzyk, U. and Gaiser, S. : Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiology Letters, 66, 81-86, 1990.   DOI
3 Sharma, O. K. and McCarty, P. L. : Isolation and characterization of a facultative aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Applied and Environmental Microbiology, 62, 761-765, 1996.
4 Muenzner, H. D., Clapp, L. W., Hozalski, R. M., Semmens, M. J. and Novak, P. J. : Dechlorination of PCE by mixed methanogenic cultures using hollow- fiber membranes. Bioremediation Journal, 6, 337-350, 2002.   DOI   ScienceOn
5 Ma, X., Novak, P. J., Semmens, M. J., Clapp, L. W. and Hozalski, R. M. : Comparison of pulsed and continuous addition of $H_2$ gas via membranes for stimulating PCE biodegradation in soil columns. Water Research, 40, 1155-1166, 2006.   DOI   ScienceOn
6 Hirl, P. J. and Irvine, R. L. : Reductive dechlorination of perchloroethylene using anaerobic sequencing batch biofilm reactors (AnSBBR). Water Science and Technology, 35, 49-56, 1997.
7 Gerritse, J., Kloetstra, G., Borger, A., Dalstra, G., Alphenaar, A. and Gottschal, J. C. : Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Applied Microbiology and Biotechnology, 48, 553-562, 1997.   DOI
8 DiStefano, T. D., Gossett, J. M. and Zinder, S. H. : Reductive dechlorination of high concentration of tetrachloroethene to ethane by an anaerobic enrichment culture in the absence of methanogenesis. Applied and Environmental Microbiology, 57, 2287-2292, 1991.
9 Fathepure, B. Z. and Vogel, T. M. : Complete degradation of polychlorinated hydrocarbons by a twostage biofilm reactor. Applied and Environmental Microbiology, 57, 3418-3422, 1991.
10 Cole, J. R., Fathepure, B. Z. and Tiedje, J. M. : Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedje DCB-1. Biodegradation 6, 167-172, 1995.   DOI
11 Christiansen, N., Christensen, S. R., Arvin, E. and Ahring, B. K. : Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor. Applied Microbiology and Biotechnology, 47, 91-94, 1997.   DOI
12 Wild, A. P., Winkelbauer, W. and Leisinger, T. : Anaerobic dech1orination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6, 309-318, 1995.   DOI
13 Cabirol, N., Jacob, F., Perrier, J., Fouillet, B. and Chambon, P. : Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. Journal of Biotechnology 62, 133-141, 1998.   DOI   ScienceOn
14 Flynn, S. J., Loffler, F. E. and Tiedje, J. M. : Microbial community changes association with a shift from reductive degradation of PCE to reductive degradation of cis-DCE and VC. Environmental Science & Technology, 34, 1056-1061, 2000.   DOI   ScienceOn
15 Gerritse, J., Renard, V., Visser, J. and Gottschal, J. C. : Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Applied Microbiology and Biotechnology, 43, 920-928, 1995.   DOI
16 Fetzener, S. : Bacterial dehalogenation. Applied Microbiology and Biotechnology, 50, 633-657, 1998.   DOI
17 Freedman, D. L. and Gossett, G. W. : Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55, 2144-2151, 1989.
18 U.S. EPA : Superfund NPL Characterization Project: National Results. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA/540/8-91/069, 1991.
19 U.S. EPA : National revised primary drinking water regulations, volatile synthetic organic chemicals in drinking water: advanced notice of proposed rulemaking. Federal Register, 47, 9349-9358, 1982.
20 Vogel, T. M. and McCarty, P. L. : Biotransforination of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49, 1080-1083, 1985.
21 Schmidt, J. E. and Ahring, B. K. : Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 49, 229-249, 1996.
22 Ensley, B. D. : Biochemical diversity of trichloroethylene metabolism. Annual Review of Microbiology, 45, 283-299, 1991.   DOI   ScienceOn
23 Fathepure, B. Z., Nengu, J. P. and Boyd, S. T. : Anaerobic bacteria that dechlorinate perchloroethene. Applied and Environmental Microbiology, 53, 2671-2674, 1987.
24 Wu, W. M., Nye, J., Hickey, R. F. and Zeikus, J. G. : Dechlorination of PCE and TCE to ethene using an anaerobic microbial consortium. In: Bioremediation of chlorinated solvents. Hinchee, R.E., Leeson, A. and Semprini, L. (eds), Battelle, Columbus Richland, pp.45-52, 1995.
25 Scholz-Muramatsu, H., Neumann, A., Messmer, M., Moore, E. and Diekert, G. : Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163, 48-56, 1995.   DOI
26 Eisenbeis, M., Bauer-Kreisel, P. and Scholz-Muramatsu, H. : Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms. Water Science and Technology, 36, 191-198, 1997.
27 Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N. and Furukawa, K. : Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dechlorination of tetrachloroethene and polychloroethanes. Bioscience, Biotechnology, and Biochemistry, 65, 1474-1481, 2001.   DOI   ScienceOn
28 Rosenthal, H., Adrian, L. and Steiof, M. : Dechlorination of PCE in the presence of $Fe^{0}$ enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55, 661-669, 2004.   DOI   ScienceOn
29 Damborsky, J : Tetrachloroethene-Dehalogenating Bacteria. Folia Microbiologica, 44, 247-262, 1999.   DOI
30 Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T. K. : Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stuzeri OX1. Nature Biotechnology 18, 775-778, 2000.   DOI   ScienceOn
31 Mendoza-Sanchez, I., Autenrieth, R. L., McDonald, T. J. and Cunningham, J. A. : Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments. Biodegradation 21, 365-377, 2010.   DOI
32 Noftsker, C. and Watwood, M. E. : Removal of tetrachloroethylene in an anaerobic column bioreactor. Applied Microbiology and Biotechnology, 48, 424-430, 1997.   DOI
33 Parsons, F., Wood, P. R. and Demarco, J. J. : Transformation of tetrachloroethane in microcosms and groundwater. Journal of the American Water Works Association, 76, 56-59, 1984.
34 Maymo-Gatell, X., Chien, Y. T., Gossett, J. M. and Zinder, S. H. : Isolation of a bacterium that reductively dechlorination tetrachloroethene to ethane. Science 276, 1568-1571, 1997.   DOI   ScienceOn
35 deBruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G. and Zehnder, A. J. B. : Complete biological reductive transformation of tetrachloroethene to ethane. Applied and Environmental Microbiology, 58, 1996-2000, 1992.
36 Parakash, S. M. and Gupta, S. K. : Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor. Bioresource Technology, 72, 47-54, 2000.   DOI   ScienceOn
37 Malachowsky, K. J., Phelps, T. J., Teboli, A. B., Minikin, D. E. and White, D. C. : Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Applied and Environmental Microbiology, 60, 542-548, 1994.
38 Cupples, A. M., Spormann, A. M. and McCarty, P. L. : Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environmental Science & Technology, 38, 4768-4774, 2004.   DOI   ScienceOn
39 Carter, S. R. and Jewel, W. J. : Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Research, 27, 607-615, 1993.   DOI   ScienceOn
40 Maymo-Gatell, X., Tandoi, V., Gossett, J. M. and Zinder, S. H. : Characterization of an $H_{2}$-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Applied and Environmental Microbiology, 61, 3928-3933, 1995.
41 Maymo-Gatell, X., Nijenhuis, I. and Zinder, S. H. : Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". Environmental Science & Technology, 35, 516-521, 2001.   DOI   ScienceOn
42 McCarty, P. L. : Breathing with chlorinated solvents. Science 276, 1521-1522, 1997.   DOI   ScienceOn
43 Lee, T. H., Tokunaga, T., Suyama, A. and Furukawa, K. : Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. Journal of Bioscience and Bioengineering, 92, 453-458, 2001.   DOI
44 Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. : Complete dechlorination of tetrachloroethene to ethane in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation 13, 411-424, 2002.   DOI   ScienceOn
45 Chang, Y. C., Hatsu, M., Jung, K., Yoo, Y. S. and Takamizawa, K. : Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of Bioscience and Bioengineering, 89, 489-491, 2000.   DOI   ScienceOn
46 Aulenta, F., Di Tomassi, C., Cupo, C., Papini, M. P. and Majone, M. : Influence of hydrogen on the reductive dechlorination of tetrachloroethene (PCE) to ethene in a methanogenic biofilm reactor: Role of mass transport phenomena. Journal of Chemical Technology & Biotechnology, 81, 1520-1529, 2006.   DOI   ScienceOn
47 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randell, R. J. : Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275, 1951.
48 Ma, X., Novak, P. J., Clapp, L. W., Semmens, M. J. and Hozalski, R. M. : Evaluation of hollow-fiber polyethylene membranes for hydrogen delivery to support reductive dechlorination in a soil column. Water Research, 37, 2905-2918, 2003.   DOI   ScienceOn
49 Hata, J., Miyata, N., Kim, E. S., Takamizawa, K. and Iwahori, K. : Anaerobic degradation of cisdichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. Journal of Bioscience and Bioengineering, 97, 196-201, 2004.   DOI   ScienceOn
50 Brewster, C. Jr, Cherry, J. A. and Gillham, R. W. : A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology, 73, 249-279, 2004.   DOI   ScienceOn
51 Hoelen, T. P., Cunningham, J. A., Hopkins, G. D., Lebron, C. A. and Reinhard, M. : Bioremediation of cis-DCE at a sulfidogenic site by amendment with propionate. Ground Water Monitoring and Remediation, 26, 82-91, 2006.
52 Komatsu, T., Shinmyo, J. and Momonoi, K : Reductive transformation of tetrachloroethy1ene to ethylene and ethane by an anaerobic filter. Water Science and Technology, 36, 125-132, 1997.
53 Koziollet, P. D., Bryniok, D. and Knackmuss, H. J. : Ethene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride. Archives of Microbiology, 172, 240-246, 1999.   DOI
54 Aulenta, F., Fina, A., Potalivo, M., Papini, M. P., Rossetti, S. and Majone, M. : Anaerobic transformation of tetrachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Science and Technology, 52, 357-362, 2005.
55 Isalou, M., Sleep, B. E. and Liss, S. N. : Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environmental Science & Technology, 32, 3579-3585, 1998.   DOI   ScienceOn
56 Holliger, C., Sehraa, G., Stams, A. J. M. and Zehnder, A. J. B. : A high purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology, 59, 2991-2997, 1993.
57 Afroza, H. S., Hasegawa, Y., Nomura, I., Chang, Y.C., Sato, T. and Takamizawa, K. : Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnology and Bioprocess Engineering 10, 40-46, 2005.   DOI   ScienceOn
58 Hobber, C., Christiansen, N., Arvin, E. and Ahring, B. K. : Improved dechlorinating incorporation of Dehalospirillum multivorans into granular sludge. Applied and Environmental Microbiology, 64, 1860-1863, 1998.