• Title/Summary/Keyword: Column Test

Search Result 2,171, Processing Time 0.029 seconds

Study on the Determination of Fire Protection Thickness based on Section Factor (강재의 단면형상에 따른 내화피복두께 산정 연구)

  • 정청운;지남용;권인규
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Seismic Performance of Beam-to-Column Joints with Wedge Connectors (쐐기형 강재 접합장치를 사용한 보-기둥 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • A new steel connection method using wedges known as Self-Locking Connector has been developed. In this study, experimental investigation was conducted to verify the seismic performance of steel beam-to-column joints with Self-Locking Connectors. Cyclic-loading tests were performed on two beam-to-column joints with Self-Locking Connectors. The two beam-to-column joint specimens were of the cantilever-type and had the same details. Test results showed that beam-to-column joints with Self-Locking Connectors were able to developa total rotation capacity of 0.06 radian, which is greater than the 0.04 radian required for Special Moment Frames. Moreover, their energy absorption capacity was much greater than that of conventional joints.

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

P-M Relations of Slender Welded Built-up Square CFT Column under Eccentric Loads (시공성을 향상시킨 용접조립 각형 CFT 편심 장주의 P-M 관계)

  • Lee, Seong-Hui;Choi, Sung-Mo;Kim, Young-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • CFST columns are structurally superior because the concrete inside the steel tubes prevents local buckling at the tubes and the tubes confine the concrete. And, the thickness of steel tube in CFST column has been thinner with development of high-strengh steel. The thinner the steel tube of a square CFST column is, the more local buckling is likely to occur. For this reason, we developed welded built-up square steel tube with stiffeners which are placed at the center of the tube width acts as an anchor. In this study, we conduct experimental test for three specimens of the 4m long span welded built-up square CFT column with parameters of L/D and D/t. And, the test results were compared with the analysis results by M-${\phi}$-P Program.

Column-loss response of RC beam-column sub-assemblages with different bar-cutoff patterns

  • Tsai, Meng-Hao;Lua, Jun-Kai;Huang, Bo-Hong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.775-792
    • /
    • 2014
  • Static loading tests were carried out in this study to investigate the effect of bar cutoff on the resistance of RC beam-column sub-assemblages under column loss. Two specimens were designed with continuous main reinforcement. Four others were designed with different types of bar cutoff in the mid-span and/or the beam-end regions. Compressive arch and tensile catenary responses of the specimens under gravitational loading were compared. Test results indicated that those specimens with approximately equal moment strength at the beam ends had similar peak loading resistance in the compressive arch phase but varied resistance degradation in the transition phase because of bar cutoff. The compressive bars terminated at one-third span could help to mitigate the degradation although they had minor contribution to the catenary action. Among those cutoff patterns, the K-type cutoff presented the best strength enhancement. It revealed that it is better to extend the steel bars beyond the mid-span before cutoff for the two-span beams bridging over a column vulnerable to sudden failure. For general cutoff patterns dominated by gravitational and seismic designs, they may be appropriately modified to minimize the influence of bar cutoff on the progressive collapse resistance.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

A study on the relationship of lumbar extensor muscle power and static spinal loaded test for old female patients with lumbar degenerative kyphosis (요추후만증을 가진 여자 노인 환자의 정적 척추부하 검사와 허리신전근력과의 관계)

  • Kim, Sung-Ho;Kim, Myung-Joon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2003
  • The purpose of this study was to investigate relationship of lumbar extensor muscle power & spinal column curve for old female patients with LDK(Lumbar degenerative kyphosis). Subjects were composed of 37 old female with LDK. The subjects were tested in their spinal segment movement and spinal column curve with Spinal-$Mouse^{\leq}$ in $1^{st}$ loaded test and $2^{nd}$ loaded test and then tested lumbar extensor muscle power with $Medx^{\leq}$ lumbar extension machine. The results of this study, were as follow; There were statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test in upright position increase spinal column forwardly(p<0.01) and decrease lumbar lordosis angle(p<0.01), but no statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test thoracic and hip & sacrum curve angle. Their lumbar extensor muscle poser is very weakness, 61.4% of normal people.

  • PDF

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.