• Title/Summary/Keyword: Column Design

Search Result 1,804, Processing Time 0.033 seconds

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept

  • Afefy, Hamdy M.;El-Tony, El-Tony M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.393-406
    • /
    • 2016
  • Axially loaded reinforced concrete columns are hardly exist in practice due to the development of some bending moments. These moments could be produced by gravity loads or the lateral loads. First, the current paper presents a detailed analysis on the overall structural behavior of 15 eccentrically loaded columns as well as one concentrically loaded control one. Columns bent in either single curvature or double curvature modes are tested experimentally up to failure under the effect of different end eccentricities combinations. Three end eccentricities ratio were studied, namely, 0.1b, 0.3b and 0.5b, where b is the column width. Second, an expression correlated the decay in the normalized axial capacity of the column and the acting end eccentricities was developed based on the experimental results and then verified against the available formula. Third, based on the equivalent column concept, the equivalent pin-ended columns were obtained for columns bent in either single or double curvature modes. And then, the effect of end eccentricity ratio was correlated to the equivalent column length. Finally, a simplified design procedure was proposed for eccentrically loaded braced column by transferring it to an equivalent axially loaded pin-ended slender column. The results of the proposed design procedure showed comparable results against the results of the ACI 318-14 code.

The Study of Structure Design for Dividing Wall Distillation Column (분리벽형 증류탑의 구조 설계 및 분리 특성 연구)

  • Lee, Seung Hyun;Lee, Moon Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposed a shortcut method for the structure design of dividing wall column based on the Fen-ske-Underwood equation by applying it on three conventional simple column configuration. It is shown that the proposed shortcut method can design the column structure including the feed tray, dividing wall section, and side-stream tray in a simple and efficient way in the initial design stage. Simulation study using HYSYS to compare the energy saving performance between the conventional sequential two column system and the dividing wall column designed by the proposed method shows that the proposed dividing wall column system saves from 16% to 65% more over the condepends on the composition of intermediate component while the optimal energy consumption pattern to internal flow distribution on the dividing wall section is characterized by the ESI factor of the feed mixture.

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

Optimal Design of Reinforced Concrete Frame Structure by Limit State Design Method (LSD에 의한 철근콘크리트 뼈대 구조의 최적설계)

  • 김동희;유홍렬;박문호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.61-67
    • /
    • 1985
  • This study is concerned with the optimum design of reinforced concrete frame structure with multi-stories and multi-bays by Limit State Design Method aimed to establish a synthetical optimal method that can simultaneously acomplish structural analysis and sectional desig. For optimum solution, the Successive Linear Programming known as effective to nonlinear optimization problem: including both multi-design variables and mulit-constrained condition was applied. The developed algorithm was applied to an actual structure and reached following results. 1)The developed algorithm was rvey effective converging to an optimal solution with 3 to 5 iteration. 2)An optimal solution was showed when bending moment redistribution factor a was 0.80. 3)The column was, regardless of story, controlled by the long column when unbraced, while in case of braced column, it is designed with 3 short column controlled by thrust and bending moment, and the supporting condition had little effect on the optimization results.

  • PDF

Shape Optimization of Damaged Columns Subjected to Conservative and Non-Conservative Forces

  • Jatav, S.K.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.20-31
    • /
    • 2014
  • This paper deals with the development of a realistic shape optimization of damaged columns that are subjected to conservative and non-conservative forces, using the Genetic Algorithm (GA). The analysis is based on the design of the most optimized shape of the column under the constraint of constant weight, considering the Static, Vibrational, and Flutter characteristics. Under the action of conservative and non-conservative longitudinal forces, an elastic column loses its stability. A numerical analysis based on FEM has been performed on a uniform damaged column, to compute the fundamental buckling load, vibration frequency, and flutter load, under various end restraints. An optimization search based on the Genetic Algorithm is then executed, to find the optimal shape design of the column. The optimized column references the one having the highest buckling load, highest vibration frequency, and highest flutter load, among all the possible shapes of the column, for a given volume. A comparison is then made between the values obtained for the optimized damaged column, and those obtained for the optimized undamaged column. The comparison reveals that the incorporation of damage in the column alters its optimal shape to only a certain extent. Also, the critical load and frequency values for the optimized damaged column are comparatively low, compared with those obtained for the optimized undamaged column. However, these results hold true only for moderate-intensity damage cases. For high intensity damage, the optimal shape may not remain the same, and may vary, according to the severity of damage.

Optimal design of stone columns reinforced soft clay foundation considering design robustness

  • Yu, Yang;Wang, Zhu;Sun, HongYue
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.305-318
    • /
    • 2020
  • Stone columns are widely used to treat soft clay ground. Optimizing the design of stone columns based on cost-effectiveness is always an attractive subject in the practice of ground treatment. In this paper, the design of stone columns is optimized using the concept of robust geotechnical design. Standard deviation of failure probability, which is a system response of concern of the stone column-reinforced foundation, is used as a measure of the design robustness due to the uncertainty in the coefficient of variation (COV) of the noise factors in practice. The failure probability of a stone column-reinforced foundation can be readily determined using Monte Carlo simulation (MCS) based on the settlements of the stone column-reinforced foundation, which are evaluated by a deterministic method. A framework based on the concept of robust geotechnical design is proposed for determining the most preferred design of stone columns considering multiple objectives including safety, cost and design robustness. This framework is illustrated with an example, a stone column-reinforced foundation under embankment loading. Based on the outcome of this study, the most preferred design of stone columns is obtained.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

A study on stiffness of flat-plate system according to column section shape (기둥단면형상에 따른 무량구조시스템 강성변화에 관한 연구)

  • Kang, Su-Min;Lee, Ji-Woong;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.314-317
    • /
    • 2006
  • In the present study, design methodologies for effective width of slabs in slab-column connections were evaluated in comparison with the experimental results on the full-scale slab-column connections. The design methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. Accordingly, the equation to calculate the effective width of slabs should be modified to reflect the effect of the change in the column section shape.

  • PDF

Design of a column for streetlamp considering the car crash (승용차 충돌을 고려한 가로등주 설계)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.57-61
    • /
    • 2013
  • A column for streetlamp has been damaged by severe wind loads such as typhoon. The stress concentration around the inspection hole may cause the collapse of the column for streetlamp. In this paper, the effects due to the wind load of 60 m/s and the car crash to the column at the speed of 48 km/h were considered to examine the design stability analysis of the column for streetlamp. The maximum von Mises stress did not exceed the yield stress of the material. Considering the car crash, the column for streetlamp was not collapsed.