• Title/Summary/Keyword: Colorectal cancer cell

Search Result 375, Processing Time 0.032 seconds

Expression and in vitro function of anti-cancer mAbs in transgenic Arabidopsis thaliana

  • Song, Ilchan;Kang, Yang Joo;Kim, Dae Heon;Kim, Mi Kyung;Ko, Kisung
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.229-233
    • /
    • 2020
  • The anti-colorectal cancer monoclonal antibody CO17-1A (mAb CO), which recognizes the tumor-associated antigen EpCAM, was expressed in transgenic Arabidopsis plants. PCR and western blot analyses showed the insertion and expression of heavy chain (HC)/HC fused to the KDEL ER retention modif (HCK) and light chain (LC) of mAb CO and mAb CO with HCK (mAb COK) in Arabidopsis transformants. Both plant-derived mAbP CO and mAbP COK were purified from a biomass of approximately 1,000 seedlings grown in a greenhouse. In sandwich ELISA, both mAbP CO showed a slightly higher binding affinity for the target, EpCAM, compared to mAbM CO. In cell ELISA, both mAbsP COs showed binding affinity to the human colorectal cancer cell line SW480. Furthermore, mAbM CO, mAbP CO, and mAbP COK exhibited dose and timedependent regression effects on SW480 cells in vitro. In summation, both mAbP CO and mAbP COK, expressed in Arabidopsis, recognized the target antigen EpCAM and showed anti-proliferative activity against human colorectal cancer cells.

Gelam Honey and Ginger Potentiate the Anti Cancer Effect of 5-FU against HCT 116 Colorectal Cancer Cells

  • Hakim, Luqman;Alias, Ekram;Makpol, Suzana;Ngah, Wan Zurinah Wan;Morad, Nor Azian;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4651-4657
    • /
    • 2014
  • The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently ($IC_{50}$ of 3mg/mL) in comparison to Gelam honey ($IC_{50}$ of 75mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75mg/mL Gelam honey) synergistically lowered the $IC_{50}$ of Gelam honey to 22mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose-dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 < 1). In conclusion, combined treatment of Gelam honey and ginger extract could potentially enhance the chemotherapeutic effect of 5-FU against colorectal cancer.

Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

  • Yoo, Byong Chul;Yeo, Seung-Gu
    • Radiation Oncology Journal
    • /
    • v.35 no.3
    • /
    • pp.281-288
    • /
    • 2017
  • Purpose: The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. Materials and Methods: CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. Results: CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. Conclusion: CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins.

Analysis of Differentially Expressed Genes by Sulindac Sulfide in Human Colorectal Cells (인간 대장암 세포주에서 sulindac sulfide 처리에 의해 차별적으로 발현되는 유전자 군의 분석)

  • Shin, Seung-Hwa;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.996-1001
    • /
    • 2007
  • To investigate whether sulindac, sulindac sulfone, and sulindac sulfide could affect cancer cell viabilities, human colorectal HCTl16 cells were treated with 10 ${\mu}M$ of each NSAID. Among treated NSAms, sulindac sulfide dramatically decreased the cell viabilities detected by MTS and the cytotoxic effect showed dose-dependent manner. To understand the molecular mechanism of cell death in response to sulindac sulfide treatment, we performed oligo DNA microarray analysis. We found that 23 genes were up-regulated more than 2 folds, whereas 33 genes were down-regulated more than 2 folds by treatment of 10 ${\mu}M$ sulindac sulfide. Among the up-regulated genes, we selected 3 genes (NAG-1, DDIT3, PCK2) and performed RT-PCR and quantitative real-time PCR to cofirm microarray data. The results of RT-PCR and real-time PCR were highly accorded with those of microarray experiment. As NAG-1 is well-known gene as tumor suppressor, we detected changes of NAG-1 expression by 10 ${\mu}M$ of sulindac, sulindac sulfone, and sulindac sulfide. The results of RT-PCR and quantitacve real-time PCR indicated that sulindac sulfide was the strongest inducer of NAG-1 among treated NSAIDS. This result implies that induction of NAG-1 by sulindac sulfide plays important role in cell death of colorectal cancer. Overall, we speculate that these results may be helpful in understanding the molecular mechanism of the cancer chemoprevention by sulindac sulfide in human colorectal cancer.

Dietary Non-nutritive Factors in Targeting of Regulatory Molecules in Colorectal Cancer: An Update

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5543-5552
    • /
    • 2013
  • Colorectal cancer (CRC), a complex multi-step process involving progressive disruption of homeostatic mechanisms controlling intestinal epithelial proliferation/inflammation, differentiation, and programmed cell death, is the third most common malignant neoplasm worldwide. A number of promising targets such as inducible nitric acid (iNOS), cyclooxygenase (COX)-2, NF-E2-related factor 2 (Nrf2), $Wnt/{\beta}$-catenin, Notch and apoptotic signaling have been identified by researchers as useful targets to prevent or therapeutically inhibit colon cancer development. In this review article, we aimed to explore the current targets available to eliminate colon cancer with an update of dietary and non-nutritional compounds that could be of potential use for interaction with regulatory molecules to prevent CRC.

Suppressive Effect of Pioglitazone, a PPAR Gamma Ligand, on Azoxymethane-induced Colon Aberrant Crypt Foci in KK-Aу Mice

  • Ueno, Toshiya;Teraoka, Naoya;Takasu, Shinji;Nakano, Katsuya;Takahashi, Mami;Yamamoto, Masafumi;Fujii, Gen;Komiya, Masami;Yanaka, Akinori;Wakabayashi, Keiji;Mutoh, Michihiro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4067-4073
    • /
    • 2012
  • Obesity is an established risk factor for colorectal cancer. Pioglitazone is a peroxisome proliferator activated receptor$receptor{\gamma}$ ($PPAR{\gamma}$) agonist that induces differentiation in adipocytes and induces growth arrest and/or apoptosis in vitro in several cancer cell lines. In the present study, we investigated the effect of pioglitazone on the development of azoxymethane-induced colon aberrant crypt foci (ACF) in KK-$A^{\mathcal{Y}}$ obesity and diabetes model mice, and tried to clarify mechanisms by which the $PPAR{\gamma}$ ligand inhibits ACF development. Administration of 800 ppm pioglitazone reduced the number of colon ACF/mouse to 30% of those in untreated mice and improved hypertrophic changes of adipocytes in KK-$A^{\mathcal{Y}}$ mice with significant reduction of serum triglyceride and insulin levels. Moreover, mRNA levels of adipocytokines, such as leptin, monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1, in the visceral fat were decreased. PCNA immunohistochemistry revealed that pioglitazone treatment suppressed cell proliferation in the colorectal epithelium with elevation of p27 and p53 gene expression. These results suggest that pioglitazone prevented obesity-associated colon carcinogenesis through improvement of dysregulated adipocytokine levels and high serum levels of triglyceride and insulin, and increase of p27 and p53 mRNA levels in the colorectal mucosa. These data indicate that pioglitazone warrants attention as a potential chemopreventive agent against obesity-associated colorectal cancer.

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa;Sanchez-Jimenez, Ester;Melguizo, Consolacion;Prados, Jose;Rama, Ana Rosa
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.563-571
    • /
    • 2018
  • Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

Expression of miR-29a in whole Blood of Patients with Colorectal Neoplasm

  • Hwang, Dasom;Kim, Dahye;Chang, Yunhee;Hirgo, Workneh Korma;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.216-222
    • /
    • 2021
  • Colorectal cancer (CRC) is major cancer with high incidence and mortality worldwide. It is known that most CRCs arise from precursor adenomatous polyps (APs). Recently, microRNA (miRNA) has been proposed as a biomarker for various cancers including CRC. In this study, the expression patterns of miR-29a in the whole blood (WB) of CRC, AP, and control groups were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) to evaluate the expression level of miR-29a in patients with colorectal neoplasm (CRN) including CRC and AP. As a result, the relative expression of miR-29a was significantly decreased in the patients with CRN compared to the control group (P<0.001). The results were in agreement with previous in vitro cell studies and studies that used tissue and feces samples, suggesting that miR-29a in WB may be useful in demonstrating the status of colorectal tissue. Additionally, we divided the control group into healthy control (HC) without any colorectal symptoms and non-tumor control (NTC) with colorectal symptoms but without any CRN. And then the relative expression of miR-29a was also significantly decreased in the NTC group compared to the HC group (P<0.001). Therefore, our study revealed that miR-29a can differentiate patients with CRN from HC group, but they are also involved in the early stage of inflammatory response and cannot be specific biomarkers for CRN.

Expression of Cyclooxygenase-2 (COX-2) in Colorectal Adenocarcinoma: an Immunohistochemical and Histopathological Study

  • Mahmoud, Abla Sayed;Umair, Ayesha;Azzeghaiby, Saleh Nasser;Alqahtani, Fahad Hussain;Hanouneh, Salah;Tarakji, Bassel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6787-6790
    • /
    • 2014
  • Background: The aim of this study was to evaluate cyclooxygenase-2 (COX-2) immunoreactivity in colorectal adenocarcinomas and to find correlations with different pathological features. Materials and Methods: This study included 35 cases of colorectal carcinoma foir which surgical colectomy specimens were collected. Immunohistochemical staining of COX-2 (cyclooxygenase-2) is done by using the Streptavidin-biotin technique. Results: This work reveals that COX-2 is positive in most cases of colorectal carcinoma and negative in normal colon tissue with statistically non significant relations between COX-2 immunostaining and different pathological features. Conclusions: Our data suggest over expression of COX-2 protein in colorectal carcinoma in contrast to normal mucosa, with a possible role in cell proliferation in carcinogenesis.