• Title/Summary/Keyword: Colorectal Cancer Cells

Search Result 351, Processing Time 0.027 seconds

Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation

  • In Hwan Tae;Jinkwon Lee;Yunsang Kang;Jeong Min Lee;Kunhyang Park;Haneol Yang;Hee-Won Kim;Jeong Heon Ko;Doo-Sang Park;Dae-Soo Kim;Mi-Young Son;Hyun-Soo Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1698-1704
    • /
    • 2024
  • Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.

Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction

  • Herrero, Alba;Benedicto, Aitor;Romayor, Irene;Olaso, Elvira;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.342-351
    • /
    • 2021
  • Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.

A GFP-labeled Human Colon Cancer Metastasis Model Featuring Surgical Orthotopic Implantation

  • Chen, Hong-Jin;Yang, Bo-Lin;Chen, Yu-Gen;Lin, Qiu;Zhang, Shu-Peng;Gu, Yun-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4263-4266
    • /
    • 2012
  • Colorectal cancer has become a major disease threatening human health. To establish animal models that exhibit the characteristics of human colorectal cancer will not only help to study the mechanisms underlying the genesis and development effectively, but also provide ideal carriers for the screening of medicines and examining their therapeutic effects. In this study, we established a stable, colon cancer nude mouse model highly expressing green fluorescent protein (GFP) for spontaneous metastasis after surgical orthotopic implantation (SOI). GFP-labeled colon cancer models for metastasis after SOI were successfully established in all of 15 nude mice and there were no surgery-related complications or deaths. In week 3, primary tumors expressing GFP were observed in all model animals under fluoroscopy and two metastatic tumors were monitored by fluorescent imaging at the same time. The tumor volumes progressively increased with time. Seven out of 15 tumor transplanted mice died and the major causes of death were intestinal obstruction and cachexia resulting from malignant tumor growth. Eight model animals survived at the end of the experiment, 6 of which had metastases (6 cases to mesenteric lymph nodes, 4 hepatic, 2 pancreatic and 1 mediastinal lymph node). Our results indicate that our GFP-labeled colon cancer orthotopic transplantation model is useful with a high success rate; the transplanted tumors exhibit similar biological properties to human colorectal cancer, and can be used for real-time, in vivo, non-invasive and dynamic observation and analysis of the growth and metastasis of tumor cells.

Plant Phenolics Ferulic Acid and P-Coumaric Acid Inhibit Colorectal Cancer Cell Proliferation through EGFR Down-Regulation

  • Roy, Nabarun;Narayanankutty, Arunaksharan;Nazeem, PA;Valsalan, Ravisankar;Babu, TD;Mathew, Deepu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4019-4023
    • /
    • 2016
  • Background: Colorectal cancer (CRC) or bowel cancer is one of the most important cancer diseases, needing serious attention. The cell surface receptor gene human epidermal growth factor receptor (EGFR) may have an important role in provoking CRC. In this pharmaceutical era, it is always attempted to identify plant-based drugs for cancer, which will have less side effects for human body, unlike the chemically synthesized marketed drugs having serious side effects. So, in this study the authors tried to assess the activity of two important plant compounds, ferulic acid (FA) and p-coumaric acid (pCA), on CRC. Materials and Methods: FA and pCA were tested for their cytotoxic effects on the human CRC cell line HCT 15 and also checked for the level of gene expression of EGFR by real time PCR analysis. Positive results were confirmed by in silico molecular docking studies using Discovery Studio (DS) 4.0. The drug parallel features of the same compounds were also assessed in silico. Results: Cytotoxicity experiments revealed that both the compounds were efficient in killing CRC cells on a controlled concentration basis. In addition, EGFR expression was down-regulated in the presence of the compounds. Docking studies unveiled that both the compounds were able to inhibit EGFR at its active site. Pharmacokinetic analysis of these compounds opened up their drug like behaviour. Conclusions: The findings of this study emphasize the importance of plant compounds for targeting diseases like CRC.

Antioxidant Activity and Anticancer Effects of Turnip Kimchi with Turnip Powder on Colorectal Cancer Cells (HT-29) (순무가루를 첨가한 순무김치의 항산화 활성 및 대장암세포(HT-29) 항암효과)

  • Kwon, Kook Won;Kang, Soon Ah
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.5
    • /
    • pp.359-368
    • /
    • 2022
  • In this study, the quality characteristics of kimchi, such as its salinity, pH, and acidity, were measured and compared, and the HT-29 human colon cancer cells were used to show the anticancer effects of kimchi. The kimchi samples used herein included standard kimchi (SK), turnip kimchi (TK), and turnip-powder-added kimchi (TPK). The measured pH and acidity of TK and TPK showed no significant differences with those of SK. Compared to SK and TK, TPK had higher DPPH scavenging activity and higher total flavonoid content, confirming its antioxidant activity. The cancer cell growth inhibition rates of TK and TPK were significantly higher than that of SK. In HT-29 cells treated with TPK, the mRNA expression of Bcl-xL, an anti-apoptosis-related gene, was lower, and the mRNA expressions of the apoptosis-related genes Bax, Bad, and caspase-9 were higher. TPK showed significantly higher levels of mRNA expressions for the cell-cycle-related genes p53 and p21 than the other samples, in addition to suppression effects on cancer cell proliferation. Compared to SK, TK and TPK suppressed the growth of colon cancer cells and showed higher anticancer effects. Therefore, it is shown that kimchi with added turnip powder had high anticancer effects.

Analysis of Differentially Expressed Genes by Sulindac Sulfide in Human Colorectal Cells (인간 대장암 세포주에서 sulindac sulfide 처리에 의해 차별적으로 발현되는 유전자 군의 분석)

  • Shin, Seung-Hwa;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.996-1001
    • /
    • 2007
  • To investigate whether sulindac, sulindac sulfone, and sulindac sulfide could affect cancer cell viabilities, human colorectal HCTl16 cells were treated with 10 ${\mu}M$ of each NSAID. Among treated NSAms, sulindac sulfide dramatically decreased the cell viabilities detected by MTS and the cytotoxic effect showed dose-dependent manner. To understand the molecular mechanism of cell death in response to sulindac sulfide treatment, we performed oligo DNA microarray analysis. We found that 23 genes were up-regulated more than 2 folds, whereas 33 genes were down-regulated more than 2 folds by treatment of 10 ${\mu}M$ sulindac sulfide. Among the up-regulated genes, we selected 3 genes (NAG-1, DDIT3, PCK2) and performed RT-PCR and quantitative real-time PCR to cofirm microarray data. The results of RT-PCR and real-time PCR were highly accorded with those of microarray experiment. As NAG-1 is well-known gene as tumor suppressor, we detected changes of NAG-1 expression by 10 ${\mu}M$ of sulindac, sulindac sulfone, and sulindac sulfide. The results of RT-PCR and quantitacve real-time PCR indicated that sulindac sulfide was the strongest inducer of NAG-1 among treated NSAIDS. This result implies that induction of NAG-1 by sulindac sulfide plays important role in cell death of colorectal cancer. Overall, we speculate that these results may be helpful in understanding the molecular mechanism of the cancer chemoprevention by sulindac sulfide in human colorectal cancer.

Effects of Duchesnea Indica of Colorectal Adenocarcinoma Cells (사매가 대장암 세포에 미치는 영향)

  • Lee, Do-Hyoung;Kim, Jin-Sung;Yoon, Sang-Hyub;Ryu, Ki-Won;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.310-319
    • /
    • 2005
  • Objectives: The aim is to identify any anti-tumor effects of Duchesnea indica(Andr.) Focke on colon cancer cells. Materials & Methods: Colo201 human adenocarcinoma cells were obtained from American Type Culture Collection. The boiled extract of Duchesnea indica(Andr.) Focke was added (10 and 20 microliters) to cultures and observed at 0, 6, and 12 hours, and at 12-hour intervals thereafter. Morphological changes in colon cancer cells were observed through an inverted microscope, Destruction of colon cancer cells was measured through Trypan blue exclusion testing. Suppression of the viability of colon cancer cells were measured via MTT assay. Anti-cancer mechanisms in the cell cycle of colon cancer cells were analysed via flow cytometry. Results: After introduction of Duchesnea indica(Andr.) Focke to cultures several changes were seen. Significant atrophy of the nucleus and cytoplasm of colon cancer cells was observed, indicating cell injury. Destruction of colon cancer cells was observed in direct proportion to dosage and duration. Suppression of viability of colon cancer cells for each test group was greater than that of the control group increasingly over time(36h, 48h, 60h, 72h), which was statistical significant (p<0.05). Cell numbers of the mitosis phase of the colon cancer cell cycle reduced. Conclusions: Statistcally significant anti-tumor effects of Duchesnea indica(Andr.) Focke were observed in this in vitro experiment. Results support a role for Duchesnea indica(Andr.) Focke in treatment of colon cancer. though it will required progressive research to develop a practical treatment.

  • PDF

The Relationship between the Expression of Melanoma Differentiation-Associated Gene-7/Interleukin-24 (MDA-7/IL-24) and Clinicopathological Features in Colorectal Adenocarcinomas

  • Seo, Boram;Hong, Young Seob;Youngmin, Youngmin;Roh, Mee Sook
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • The melanoma differentiation-associated gene-7 (MDA-7) protein, also known as interleukin-24 (IL-24), is a novel candidate of tumor suppressor that can induce apoptosis experimentally in a variety of human malignant cells. However, there have been few studies about its role in colorectal cancer. We performed immunohistochemical detection of MDA-7/IL-24 in 399 tissue samples from primary colorectal adenocarcinoma patients using a tissue microarray. Western blotting was then done to confirm the immunohistochemical observations. MDA-7/IL-24 immunoreactivity was observed in 116 (29.1%) of the 399 colorectal adenocarcinoma cases. Analysis of the MDA-7/IL-24 expression by Western blotting confirmed the immunohistochemical results. The tumors with a negative MDA-7/IL-24 expression more frequently showed poor differentiation (P=0004), lymph node metastasis (P=0.001), deep invasion (P=0.008) and high stage (P=0.001). A subset of colorectal adenocarcinoma revealed a decreased expression of MDA-7/IL-24, and this was associated with progressive pathologic features. These findings suggest that loss of MDA-7/IL-24 expression may play a role in tumor growth and progression of colorectal adenocarcinomas.