DOI QR코드

DOI QR Code

Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation

  • In Hwan Tae (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jinkwon Lee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Yunsang Kang (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong Min Lee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kunhyang Park (Korea Research Institute of Bioscience and Biotechnology) ;
  • Haneol Yang (Korea Research Institute of Bioscience and Biotechnology) ;
  • Hee-Won Kim (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong Heon Ko (Korea Research Institute of Bioscience and Biotechnology) ;
  • Doo-Sang Park (Korea Research Institute of Bioscience and Biotechnology) ;
  • Dae-Soo Kim (Korea Research Institute of Bioscience and Biotechnology) ;
  • Mi-Young Son (Korea Research Institute of Bioscience and Biotechnology) ;
  • Hyun-Soo Cho (Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2024.05.02
  • Accepted : 2024.06.26
  • Published : 2024.08.28

Abstract

Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.

Keywords

Acknowledgement

This work was supported by a grant from the Technology Innovation Program (No. 20008777) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), a National Research Foundation (NRF) of Korea grant funded by the Ministry of Science, ICT and Future Planning (NRF-2018M3A9H3023077/NRF-2021M3A9H3016046, RS-2023-00225239, RS-2024-00336620, 2022R1A2C1003118), a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare, 21A0404L1), and the KRIBB Research Initiative Program. The funders had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript.

References

  1. Nagai H, Kim YH. 2017. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 9: 448-451. 
  2. Siddiqui R, Boghossian A, Alharbi AM, Alfahemi H, Khan NA. 2022. The pivotal role of the gut microbiome in colorectal cancer. Biology (Basel) 11: 1642. 
  3. Noor A, Lopetegui-Lia N, Desai A, Mesologites T, Rathmann J. 2020. Breast cancer metastasis masquerading as primary colon and gastric cancer: A case report. Am. J. Case Rep. 21: e917376. 
  4. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338: 120-123. 
  5. Cheng Y, Ling Z, Li L. 2020. The intestinal microbiota and colorectal cancer. Front. Immunol. 11: 615056. 
  6. Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA. 2018. The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J. Gastrointest. Oncol. 9: 769-777. 
  7. Pandey H, Tang DWT, Wong SH, Lal D. 2023. Gut microbiota in colorectal cancer: Biological role and therapeutic opportunities. Cancers (Basel) 15: 866. 
  8. O'Neill I, Schofield Z, Hall LJ. 2017. Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases. Emerg. Top. Life Sci. 1: 333-349. 
  9. Underwood MA, German JB, Lebrilla CB, Mills DA. 2015. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr. Res. 77: 229-235. 
  10. Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, et al. 2022. Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol. Res. 184: 106406. 
  11. Massague J. 2012. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13: 616-630. 
  12. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. 2005. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16: 1987-2002. 
  13. Gupta S, Maitra A. 2016. EMT: Matter of life or death? Cell 164: 840-842. 
  14. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. 2016. TGF-beta tumor suppression through a lethal EMT. Cell 164: 1015-1030. 
  15. Ryu TY, Kim K, Han TS, Lee MO, Lee J, Choi J, et al. 2022. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. ISME J. 16: 1205-1221. 
  16. Todorov L, VadeBoncouer T. 2014. Etiology and use of the "hanging drop" technique: a review. Pain Res. Treat. 2014: 146750. 
  17. Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, et al. 2023. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor beta signaling in SMAD4-dependent manner. Cell Death Discov. 9: 356. 
  18. Rojas A, Padidam M, Cress D, Grady WM. 2009. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim. Biophys. Acta 1793: 1165-1173. 
  19. Ioannou M, Kouvaras E, Papamichali R, Samara M, Chiotoglou I, Koukoulis G. 2018. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. J. Mol. Histol. 49: 235-244. 
  20. Maier HJ, Wirth T, Beug H. 2010. Epithelial-mesenchymal transition in pancreatic carcinoma. Cancers (Basel) 2: 2058-2083. 
  21. Clark AG, Vignjevic DM. 2015. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36: 13-22. 
  22. Wang X, Chen S, Nan H, Liu R, Ding Y, Song K, et al. 2021. Abnormal aggregation of invasive cancer cells induced by collective polarization and ECM-mediated mechanical coupling in coculture systems. Research (Wash D C) 2021: 9893131. 
  23. Gopi LK, Kidder BL. 2021. Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains. Nat. Commun. 12: 1419. 
  24. Tung KH, Goodman MT, Wu AH, McDuffie K, Wilkens LR, Nomura AM, et al. 2004. Aggregation of ovarian cancer with breast, ovarian, colorectal, and prostate cancer in first-degree relatives. Am. J. Epidemiol. 159: 750-758. 
  25. Harryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, et al. 2016. The cohesive metastasis phenotype in human prostate cancer. Biochim. Biophys. Acta 1866: 221-231. 
  26. Schuster E, Taftaf R, Reduzzi C, Albert MK, Romero-Calvo I, Liu H. 2021. Better together: circulating tumor cell clustering in metastatic cancer. Trends Cancer 7: 1020-1032. 
  27. Kandalai S, Li H, Zhang N, Peng H, Zheng Q. 2023. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol. Ther. 24: 2240084. 
  28. Algrafi AS, Jamal AA, Ismaeel DM. 2023. Microbiota as a new target in cancer pathogenesis and treatment. Cureus 15: e47072. 
  29. Procaccianti G, Roggiani S, Conti G, Brigidi P, Turroni S, D'Amico F. 2023. Bifidobacterium in anticancer immunochemotherapy: friend or foe? Microbiome Res. Rep. 2: 24. 
  30. Wei H, Chen L, Lian G, Yang J, Li F, Zou Y, et al. 2018. Antitumor mechanisms of bifidobacteria. Oncol. Lett. 16: 3-8. 
  31. Gomes S, Baltazar F, Silva E, Preto A. 2022. Microbiota-derived short-chain fatty acids: new road in colorectal cancer therapy. Pharmaceutics 14: 2359. 
  32. Son MY, Cho HS. 2023. Anticancer effects of gut microbiota-derived short-chain fatty acids in cancers. J. Microbiol. Biotechnol. 33: 849-856. 
  33. Liu Y, Lau HC, Yu J. 2023. Microbial metabolites in colorectal tumorigenesis and cancer therapy. Gut Microbes 15: 2203968. 
  34. Bernardo G, Le Noci V, Di Modica M, Montanari E, Triulzi T, Pupa SM, et al. 2023. The emerging role of the microbiota in breast cancer progression. Cells 12: 1945.