• 제목/요약/키워드: Coloration efficiency

검색결과 93건 처리시간 0.035초

에너지 절약 스마트윈도우용 전기변색 재료의 개발 (The Development of Electrochromic Materials for Energy Saving Smart Windows.)

  • 조봉희;김영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1308-1310
    • /
    • 1994
  • The electrochromism of $WO_3$ and $V_2O_5$ thin films have been studied. The $WO_3$ thin film is found to be cathodic coloration material and the coloration efficiency of this film is close to $60 [cm^2/C]$ in the near infrared region. The $V_2O_5$ thin film exhibits cathodic coloration in tile near infrared and anodic coloration in the blue and near UV region. The cathodic coloration in the $450{\sim}1100 nm$ wavelength range is relatively weak with a maximum coloration efficiency of $6 [cm^2/C]$).

  • PDF

리튬이 주입된 전기변색 V$_2$O$_{5}$ 박막의 광 특성에 관한 연구 (A Study on the Optical Properties of Lithium Injection in V$_2$O$_{5}$ Electrochromic Thin Films)

  • 하승호;조봉희;김영호
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.802-807
    • /
    • 1995
  • 진공증착법으로 제작한 V$_2$O$_{5}$ 박막의 두께 및 결정성에 따른 전기변색 특성을 체계적으로 조사하였다. 증착된 박막은 노란색을 띄고 있었으며 14$0^{\circ}C$ 보다 높은 기판온도에서 증착된 V$_2$O$_{5}$ 박막은 결정질로 낮은 기판온도에서 증착된 박막들은 비정질로 밝혀졌다. 리튬 이온 주입에 따른 V$_2$O$_{5}$ 박막의 광 변조 특성 결과 V$_2$O$_{5}$ 박막의 두께와 결정성에 관계없이 300~500nm 파장영역에서는 산화발색이 500~1100nm 파장영역에서는 환원 발색이 나타났다. 비정질과 결정질 Li$_{x}$ V$_2$O$_{5}$ 박막의 optical band gap 에너지는 리튬 이온 주입양이 증가함에 따라 (x=0.0~0.6) 각각 0.75 [eV], 0.17 [eV]씩 높은 에너지쪽으로 이동하였다. 비정질 Li$_{x}$ V$_2$O$_{5}$ 박막의 coloration efficiency는 근적외선 영역에서는 리튬 이온 주입과 박막두께에 따라 거의 변화가 없었으나 blue와 near-UV 영역에서는 absorption edge가 500nm 파장근처에서 높은 에너지 부근으로 이동됨으로 인하여, 박막두께가 증가하고 리튬 이온주입양이 감소할수록 coloration efficiency가 상당히 증가하는 것으로 나타났다. 그러나 결정질 Li$_{x}$ V$_2$O$_{5}$ 박막의 경우 coloration efficiency는 전파장영역에서 리튬 이온 주입양과 박막두께에 거의 영향을 받지 않는 것으로 밝혀졌다.

  • PDF

솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구 (The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature)

  • 심희상;나윤채;조인화;성영은
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Synthesis and Characterization of Tungsten Trioxide Films Prepared by a Sol-Gel Method for Electrochromic Applications

  • Kim, Tae-Ho;Nah, Yoon-Chae
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.309-314
    • /
    • 2015
  • Tungsten trioxide thin films are successfully synthesized by a sol-gel method using tungsten hexachloride as precursors. The structural, chemical, and optical properties of the prepared films are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The electrochemical and electrochromic properties of the films before and after heat treatment are also investigated by cyclic voltammetry, chronoamperometry, and in situ transmittance measurement system. Compared to as-prepared films, heat-treated tungsten trioxide thin films exhibit a higher electrochemical reversibility of 0.81 and superior coloration efficiency of $65.7cm^2/C$, which implies that heat treatment at an appropriate temperature is a crucial process in a sol-gel method for having a better electrochromic performance.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Coloration behaviors of phthalocyanine reactive dye on nylon substrates: experiments, empirical modeling and statistical analysis

  • Kim, Byung-Soon;Ravikumar, K.;Yoon, Seok-Han;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제19권2호
    • /
    • pp.14-23
    • /
    • 2007
  • This research article explores the use of phthalocyanine reactive dye on nylon substrate. The effect of factors such as pH, temperature, liquor ratio and alkali addition on level of dye exhaustion, fixation and total fixation efficiency. Low pH, high temperature and low liquor ratio were found to be suitable conditions for maximum % exhaustion values. The effect of sulphatoethylsulphone(SES) and vinylsulphone(VS) form of the dyes on level of dye fixation was also discussed. The optimized exhaustion (%E), fixation(%F) and total fixation efficiency were determined. Modification of the dyeing process with alkali addition displayed that dye fixation(%) increased by alkali addition. Vinylsulphone(VS) moiety of the dye was found to be superior to. maximum fixation (%F). Appropriate predictable empirical models, relatively a new approach in dyeing processes, were developed incorporating interactions effects of temperature, pH and liquor ratio for predicting % exhaustion, fixation and total fixation efficiency. The significance of the mathematical model developed was ascertained using microsoft excel regression(solver) analysis module. High correlation coefficient was obtained (R2=0.9895 for % exhaustion, R2=0.9932 for fixation, R2=0.9965 for total fixation efficiency) for the model which shows prominent prediction capacity of the model for my conditions. The predictable polynomial equations developed from tile experimental results were thoroughly analyzed by ANOVA (Analysis of Variance) statistical concepts.

코로나 방전에 의한 방진/의료용 마스크 여과재의 기능화 가공 (Functional Finishing of Nonwoven Filter for Dust-proof/Medical Masks by Corona Discharging Treatment)

  • 홍영기
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.232-239
    • /
    • 2013
  • In this study, 25gsm melt-blown polypropylene nonwoven for dust-proof/medical masks was finished by the corona discharging treatment. The influence of corona discharging parameters on the filtration efficiency was investigated. Several parameters such as discharging voltage, discharging speed, distance to discharging wire and configuration of discharging system had an effect on filtration efficiency, while the parameters had no effect on breathing resistance. Optimum corona discharging conditions are as follows: Wires were installed on the upper part of the nonwoven and paper pipe was installed on the lower part of the nonwoven having a distance of 5cm. The sequence of wire voltages was +60 kV, +60 kV, 0, -60 kV, and -60 kV. The discharging voltage and speed were 60 kV and 30m/min respectively. The nonwoven treated by corona discharging at the optimum condition showed a filtration efficiency of 80% or more, which is suitable for dust-proof/medical masks.

폴리비닐알코올 편광필름 제조에 관한 연구 (A Study on the Preparation of Poly(vinyl alcohol) Polarizing Film)

  • 김삼수;우화령;류원석
    • 한국염색가공학회지
    • /
    • 제16권4호
    • /
    • pp.19-25
    • /
    • 2004
  • Both poly(vinyl alcohol)$(PVA)-I_2$ and PVA-dye polarizing film were prepared using PVA with number-average degree of polymerization of 1,700, 2,300, 2,600. The optical property of used dye in this study closed to the that of iodine. The PVA-dye polarizing film was prepared through the dyeing process. In comparison of the result of the measurement of the heat and humidity resistance of two types polarizing films, it of PVA-dye polarizing film was higher than that of a conventional $PVA-I_2$polarizing film. The transmittance and the polarization efficiency of PVA-dye polarizing film was significantly influenced by dye concentration, dipping time, salt concentration, and temperature of dye bath. The PVA-dye polarizing film exhibited a high polarization efficiency of 99.3% and a good transmittance of 42.4%.

제주 송이를 이용한 견직물의 염색성 및 기능성 (Dyeability and Functionality of Silk Fabrics Dyed with Jeju scoria)

  • 임은숙;이혜선;한충훈
    • 한국염색가공학회지
    • /
    • 제23권3호
    • /
    • pp.187-194
    • /
    • 2011
  • This study used Jeju scoria to dye cotton fabric and measured its dyeability, colorfastness, antibacterial activity, deodorization efficiency, ultraviolet protection, and far-infrared emission. The cotton fabric was colored to yellowish red and optimal dyeing can be achieved at a temperature of $80^{\circ}C$ for a dyeing time of 120 minutes with a colorant concentration of 25%(o.w.b). The colorfastness to light, rubbing, perspiration, and washing was 8, 5, 5, and 4~5 ratings respectively, where the wash colorfastness remained after 15 wash cycles. The cotton fabric dyed with Jeju scoria demonstrated excellent antimicrobial activity to Staphylococcus aureus and high deodorization efficiency. Ultraviolet protection factor was as high as 50+. The Jeju scoria can be used as a new colorant for the natural dyeing of silk.

각종 염색조제의 생분해성에 관한 연구 (A Study on Biodegradability of Various Dyeing Auxiliaries)

  • 류원률;이호경;이영호;신현철;최장승;이기풍;조무환
    • 한국염색가공학회지
    • /
    • 제10권6호
    • /
    • pp.42-48
    • /
    • 1998
  • For the effective operation of complex dyeing wastewater treatment plant, the biodegradability of various dyeing agents were investigated. For experiments in biodegradability, activated sludge from aeration tank of wastewater treatment plant was used. Biodegradability of dyeing agents were compared by measuring the $BOD_5/COD_{Cr}$ ratios and $BOD_5$ removal efficiency. $COD_{Cr}$. removal efficiency of dyeing agents was less than 80% , while $BOD_5$ removal efficiency was less than 60% after of days. Therefore, biodegradation by activated sludge were found very difficult. Judging from this, it is necessary to isolate strains biodegrading dyeing agents in order to operate activated sludge process safely.

  • PDF