• Title/Summary/Keyword: Colorant

Search Result 256, Processing Time 0.026 seconds

Physicochemical Stability of Anthocyanins from a Korean Pigmented Rice Variety as Natural Food Colorants (천연색소로서 한국산 유색미 안토시아닌의 안정성 연구)

  • Yoon, Joo-Mi;Cho, Man-Ho;Hahn, Tae-Ryong;Paik, Young-Sook;Yoon, Hye-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.211-217
    • /
    • 1997
  • The physical and chemical stability of anthocyanins from a Korean pigmented rice variety was investigated at various conditions of pH, temperature, metal ion, sugar, organic acid and light. The anthocyanin pigments were relatively stable with half-lives of 36 days (pH 2.0) and 17 days (pH 3.0), while they were decomposed in a day at neutral and basic pH of 7.0 and 9.0 at $25^{\circ}C$. The anthocyanins also showed high thermal stability at pH 3.0; the half-lives were 7.4 hr, 23.6 hr and 96.3 hr at $95^{\circ}C,\;75^{\circ}C\;and\;50^{\circ}$, respectively. Addition of di- and tri-valent metal ions at pH 3.0 resulted in the increase of color intensity and stability throughout 21 days of storage periods at $25^{\circ}C$. Most sugars added accelerated the degradation of anthocyanin pigments, so that fructose showed the greatest degradation effect on the pigments. Addition of citric acid at pH 3.0 increased stability of anthocyanins, while tartaric acid decreased stability. The anthocyanins were very sensitive on light irradiation with a degradation half-life of 14 hr under 20,000 lux-light dosage at pH 3.0.

  • PDF

Extraction Conditions and Quality Stability of Carotenoprotein from Krill Processing Waste by Proteolytic Enzymes (크릴 가공폐기물을 이용한 Carotenoprotein의 추출조건 및 품질안정성에 관한 연구)

  • Kim Se-Kwon;KiM Yong-Tae;KWAK Dong-Chae;CHO Duck-Jae;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.40-50
    • /
    • 1990
  • The purpose of this paper is to develop a colorant from krill, Euphausia superba, process wastes for use in food products. Carotenoproteins were extracted from preboiled krill processing offal(PKPO) and raw frozen krill processing offal(RKPO) with the aid of proteolytic enzymes. The long-term stability of the astaxanthin associated with the carotenoprotein by the addition of pretense inhibitor and antioxidant to the product were also investigated. Total astaxanthin contents of PKPO and RKPO were $35.1mg\%,\;22.1mg\%$ and those in carotenoproteins were $98.6mg\%,\;61.9mg\%$, respectively. The chitin contents of PKPO and RKPO were $6.9\%,\;4.5\%$, however, those of carotenoproteins were not determined. When $0.5\%$ trypsin was added to the extraction medium containing 0.5M $Na_3EDTA$ at $4^{\circ}C,\;74\%$ of astaxanthin and $83\%$ of the protein of PKPO were recovered as carotenoprotein in 24hrs. The amino acid profile in carotenoprotein was mainly composed of glutamic acid, methionine, aspartic acid and isoleurine. Their contents amounted to about 40% of the total amino acids, followed by alanine, phenylalanine, Iysine, leucine, threonine and tyrosine in that order, with a small amount of cysteine and tryptophan. The levels of essential amino acids were high as much as $38.3\%\~43.6\%$ of the total amino acids. The maximum observance of the carotenoid fraction from krill processing offal and from carotenoprotein was 469nm in petroleum ether. The separated components of carotenoprotein by TLC had Rfs $0.20\~0.23\;0.56\~0.60$ and $0.88\~0.91$. The carotenoids were comprised of astaxanthin, astaxanthin monoester and asthaxanthin diester in $25\~30\%\;,35\~40\%$and $40\~45\%$, respectively. The loss of carotenoids in the carotenoprotein can be prevented by the addition of pro-tease inhibitor(trasylol) and antioxidant(BHT) below $4^{\circ}C$.

  • PDF

The Physicochemical Stabilities and Biological Activities of Pigment Extracts from Pseudoalteromonas sp. Ju11-1 and Pseudoalteromonas sp. Ju14 (Pseudoalteromonas sp. Ju11-1과 Pseudoalteromonas sp. Ju14의 색소 추출물의 물리화학적 안정성과 기능성)

  • Park, Jin-Sook;Cho, Hyun-Hee;Kang, Myung-Hee
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.404-410
    • /
    • 2009
  • We investigated the physicochemical stabilities and biological activities of ethanol- extracted pigment from marine bacteria Pseudoalteromonas sp. Ju11-1 and Pseudoalteromonas sp. Ju14. The bacterial pigment of strain Ju11-1 was very stable at pH 5.0 below $25^{\circ}C$. The stability of the pigment showed higher stability in the presence of metal ions such as $Cu^{2+}$ and $Mg^{2+}$. The pigment has activity of free-radical scavenging ($IC_{50}$ $95.2{\mu}g$/ml) and the protective antioxidant effect ($ED_{50}$ $82.3{\mu}g$/ml) against DNA damage in human lymphocytes. The bacterial pigment of strain Ju14 was very stable at pH range between 4.0 and 8.0 below $40^{\circ}C$. In the presence of light, the pigment was also very stable, showing more than 90 percent of remaining absorbance during 14 days at $25^{\circ}C$. The stability of the pigment, when metal ions were present, showed higher stability in all examined metal ions except for $Fe^{2+}$, $Al^{3+}$, and $Cu^{2+}$, especially in the presence of $Na^+$. The pigment has activity of freeradical scavenging ($IC_{50}$ $208.6{\mu}g$/ml) and the protective antioxidant effect ($ED_{50}$ $ 96.4{\mu}g$/m) against DNA damage in human lymphocytes. The result indicates that the bacterial pigments from marine bacteria, Pseudoalteromonas sp. Ju11-1 and Pseudoalteromonas sp. Ju14 showed higher physicochemical stability and significant effects for reduction in oxidative DNA damage. Therefore, the results suggest that these bacterial pigments could be used as a natural colorant having the advantages of antioxidant.

Natural dyeing with aqueous Extracts of Black bean seed coat (검정팥 종피 추출물에 의한 천연염색)

  • Cha, Hae-Suk;Jung, Yang-Sook;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2012
  • In this study the natural colorant was extracted from black bean seed coat in aqueous solution and used to dye silk and cotton fabrics. To obtain the optimal dyeing conditions it was examined at various dyeing condition (temperature, pH, time and liquor ratio). The dyeing behavior and the depths of shade which were evaluated in terms of K/S and CIELAB color difference values of the dyed and mordanted fabrics were also investigated. The dyeing fastness evaluated standard light and wash fastness tests. The obtained results were as follows ; The most K/S value of silk and cotton fabrics were obtained when the pH was 4.0 and 4.8, respectively and it increased slightly with dyeing time passes when the dyeing temperatures were at $40^{\circ}C$ and $60^{\circ}C$ but, it increased at $80^{\circ}C$. The color of silk fabrics changed from yellowish red to yellow at only Fe mordanting among various mordanting. Sn and Ti mordanting of silk fabric and only Ni mordanting of cotton fabric increased the $L^*$ values, but the others decreased. The light fastness of silk fabrics showed 4-6 grade without mordant, 4-5 grade with Al, 3-4 grade with Cu and Sn, and 2-3 grade with Fe as mordant, and that of cotton fabrics showed 1-2 grade without mordant, 2-3 grade with Fe, 2 grade with Cu, 1-2 grade with Al and Sn as mordants. All mordanting coluld not improve the light fastness of fabrics. Washing fastness(fade) of silk fabrics showed 2 grade without mordants and 2-3 grade with mordants and those of cotton fabrics showed 4 grade with Cu, 3 grade without mordant and with Al, Sn and Fe. All of the washing fastness(stain) of both fabrics showed 4-5 grade.

  • PDF

The Optimization and Verification of an Analytical Method for Sodium Iron Chlorophyllin in Foods Using HPLC and LC/MS (식품 중 철클로로필린나트륨의 HPLC 및 LC/MS 최적 분석법과 타당성 검증)

  • Chong, Hee Sun;Park, Yeong Ju;Kim, Eun Gyeom;Park, Yea Lim;Kim, Jin Mi;Yamaguchi, Tokutaro;Lee, Chan;Suh, Hee-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.148-157
    • /
    • 2019
  • An optimized analytical method for sodium iron chloriphyllin in foods was established and verified by using high performance liquid chromatography with attached diode array detection. An Inertsil ODS-2 column and methanol-water (80:20 containing 1% acetate) as a mobile phase were employed. The limit of detection and quantitation of sodium iron chloriphyllin were 0.1 and 0.3 mg/kg, respectively, and the linearity of calibration curve was excellent ($R^2=0.9999$). The accuracy and precision were 93.9~104.95% and 2.0~7.7% in both inter-day and intra-day tests. Recoveries for candy and salad dressing were ranged between 93 and 104% (relative standard deviation, (RSD) 0.3~4.3%), and between 83 and 115% (RSD 1.2~2.0%), respectively. Liquid chromatography mass spectrometry was used to verify the main components of sodium iron chlorophyllin which were Fe-isochlorin e4 and Fe-chlorin e4.

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.