This paper proposes an efficient partial matching system and representation by using a region-based method for 2D image, and we applied to an extraction of the ROI(Region of Interest) according to its matching score. The matching templates consist of the global pattern and the local one. The global pattern can make it by using region-based relation between center region and its rest regions in an object. And, the local pattern can be obtained appling to the same method as global, except relation between objects. As the templates can be normalized, we use this templates for extraction of ROI with invariant to size and position. And, our system operates only one try to match, due to normalizing of region size. To use our system for searching and examining if it's the ROI by evaluating the matching function, at first, we are searching to find candidate regions with the global template. Then, we try to find the ROI among the candidates, and it works this time by using the local template. We experimented to the binary and the color image respectively, they showed that the proposed system can be used efficiently for representing of the template and the useful applications, such as partially retrievals of 2D image.
In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.
본 논문에서는 조명 변화에 강인한 상호 정보량 기반의 스테레오 정합 기법을 제안한다. 일반적으로 다양한 조명 조건에서 취득한 스테레오 영상은 좌우 영상 간에 컬러의 변화가 발생하기 때문에 정확한 스테레오 정합점을 찾는 것이 쉽지 않다. 이 경우, 컬러를 보정하는 작업을 우선 수행하는 것이 일반적이다. 그러나, 좌우 스테레오 영상에 대해서는 컬러 값을 동일하게 보정하는 작업도 시점 차이로 인한 좌우 영상의 변화로 인해서 좌우 영상에 대한 정합 정보가 요구되므로 쉽지 않다. 본 논문에서는 다양한 조명 조건에서 취득한 영상에 강인한 스테레오 정합 기법을 제안한다. 이를 위해서 선형적인 관계를 갖는 로그-색도 (log-chromaticity) 컬러 공간으로 변형을 수행하였고, 이 컬러 공간에서 상호 정보량에 기반한 새로운 스테레오 정합 비용 (cost)을 제안하였다. 제안하는 비용은 가중치가 적용된 상호 정보량과 SIFT (Scale Invariant Feature Transform) 묘사 벡터의 정보를 화소 (pixel)마다 적응적으로 결합한다. 또한, 보다 정확한 변위 지도 예측을 위해서 세그먼트 기반의 평면 제한 조건도 제안하는 비용에 포함되었다. 다양한 실험 데이터에 대해서 테스트한 결과, 제안하는 방법이 기존의 방법들에 비해서 보다 정확한 변위 지도 결과를 얻는 것을 확인하였다.
본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.
본 논문은 IPTV에서 방영되는 디지털 콘텐츠에서 검색하고자 하는 컷의 위치 정보를 검색하는데, 이때 색 분포에 관한 특징 정보를 이용한 FE-CBIRS을 제안한다. 기존 CBIRS에서는 색상과 모양에 대한 정보를 추출하여 이미지를 구분하는 특징정보로써 활용하며, 이미지를 세그멘테이션 처리하여 얻은 부분영역 특징정보를 전체 이미지의 특징정보와 함께 사용하여 검색하는 방법을 제시하였다. 또한 적용되는 색상 특징 정보의 경우 색상, 채도, 명도의 각각에 대한 평균, 표준편차, 왜도를 사용하며 부분영역을 특징정보로 적용하는 경우 대표색상만을 사용한다. 아울러 모양특징정보의 경우 추출된 부분영역들에 대한 불변 모멘트가 주요하게 사용된다. 이로 인한 처리시간의 문제, 정확성의 문제가 제기되어 왔다. 그러나 본 논문에서 제시하는 방법에서는 추출된 색상 특징정보들을 클래스별로 구분하여 인덱싱 하고 검색 시 비교대상 이미지를 해당 컷에 한정하여 적용하므로서 검색속도를 향상시키도록 하였다.
본 논문에서는 텍스쳐와 컬러 정보를 기반으로 비디오 감시를 위한 빠른 물체 분류 방법을 제안한다. 영상들로부터 SURF와 색 히스토그램의 국부적 패치들을 추출하여 그들의 장점을 이용한다. SURF는 명암 내용 정보를 제공하고 색 정보는 패치에 대한 특이성을 증강시킨다. SURF의 빠른 계산뿐만 아니라 객체의 색 정보를 활용한다. 국부적 특징을 이용하여 관심 영역 혹은 영상의 전역적 서술자를 생성하기 위해 Bag of Word 모델을 이용하고, 전역적 서술자를 분류하기 위해 Na$\ddot{i}$ve Bayes 모델을 이용한다. 또한 본 논문에서는 판별적인 기술자인 SIFT도 성능 분석한다. 네 종류의 객체에 대한 실험결과 95.75%의 인식률을 보였다.
This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.
In this paper. a robust gesture recognition system is designed and implemented to explore the communication methods between human and computer. Hand gestures in the proposed approach are used to communicate with a computer for actions of a high degree of freedom. The user does not need to wear any cumbersome devices like cyber-gloves. No assumption is made on whether the user is wearing any ornaments and whether the user is using the left or right hand gestures. Image segmentation based upon the skin-color and a shape analysis based upon the invariant moments are combined. The features are extracted and used for input vectors to a radial basis function networks(RBFN). Our "Puppy" robot is employed as a testbed. Preliminary results on a set of gestures show recognition rates of about 87% on the a real-time implementation.
한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
/
pp.279-286
/
2000
The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.
본 논문에서는 웨이브릿 변환 영역에서 추출된 특징을 기반으로 한 내용기반 영상검색 방법에 관해 연구하였다. 기존의 웨이브릿 기반의 방법에서의 문제점인 특징벡터의 크기를 줄이기 위해 웨이브릿 계수의 영역별 에너지 값을 이용하였으며, 대상물의 이동, 회전, 크기 변화에 영향을 받지 않는 모멘트 특성을 이용한 검색방법을 제안하였다. 본 방법은 특징벡터의 크기를 줄이고, 기존의 특징벡터와 비교해서 검색시간을 단축하면서 분류검색의 효율성을 향상시켰다. 영역기반 영상검색 기능을 제공하기 위해 영상분할 방법에 대해 연구하였으며, 불규칙한 광원에 의한 영향을 최소화할 수 있는 영상분할 방법을 제안하였다 영상분할은 영역병합을 이용하였고, 병합후보영역은 웨이브릿 변환의 고주파 대역 에너지 값을 이용하여 선정하였다 분할된 영역정보를 이용하여 칼라와 질감, 모양 특징벡터를 구성하여 영역기반 영상검색을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.