• Title/Summary/Keyword: Color-invariant image

Search Result 71, Processing Time 0.021 seconds

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.

Implementation of a Robust Visual Surveillance Algorithm under outdoor environment (옥외 환경에강인한 영상 감시알고리듬구현)

  • Jung, Yong-Bae;Kim, Tea-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper describes a robust visual surveillance algorithm under outdoor environment. One of the difficult problems for outdoor is to obtain effective updating process of background images. Because background images generally contain the shadows of buildings, trees, moving clouds and other objects, they are changed by lapse of time and variation of illumination. They provide the lowering of performance for surveillance system under outdoor. In this paper, a robust algorithm for visual surveillance system under outdoor is proposed, which apply the mixture Gaussian filter and color invariant property on pixel level to update background images. In results, it was showed that the moving objects can be detected on various shadows under outdoor.

  • PDF

Image Feature Representation Using Code Vectors for Retrieval

  • Nishat, Ahmad;Zhao, Hui;Park, Jong-An;Park, Seung-Jin;Yang, Won-II
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • The paper presents an algorithm which uses code vectors to represent comer geometry information for searching the similar images from a database. The comers have been extracted by finding the intersections of the detected lines found using Hough transform. Taking the comer as the center coordinate, the angles of the intersecting lines are determined and are represented using code vectors. A code book has been used to code each comer geometry information and indexes to the code book are generated. For similarity measurement, the histogram of the code book indexes is used. This result in a significant small size feature matrix compared to the algorithms using color features. Experimental results show that use of code vectors is computationally efficient in similarity measurement and the comers being noise invariant produce good results in noisy environments.

  • PDF

Real-Time Tracking for Moving Object using Neural Networks (신경망을 이용한 이동성 칼라 물체의 실시간 추적)

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2358-2361
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks which have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, this paper first has a global search of entire image and tracks the object through local search when the object is recognized.

  • PDF

An Image Retrieving Scheme Using Salient Features and Annotation Watermarking

  • Wang, Jenq-Haur;Liu, Chuan-Ming;Syu, Jhih-Siang;Chen, Yen-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.213-231
    • /
    • 2014
  • Existing image search systems allow users to search images by keywords, or by example images through content-based image retrieval (CBIR). On the other hand, users might learn more relevant textual information about an image from its text captions or surrounding contexts within documents or Web pages. Without such contexts, it's difficult to extract semantic description directly from the image content. In this paper, we propose an annotation watermarking system for users to embed text descriptions, and retrieve more relevant textual information from similar images. First, tags associated with an image are converted by two-dimensional code and embedded into the image by discrete wavelet transform (DWT). Next, for images without annotations, similar images can be obtained by CBIR techniques and embedded annotations can be extracted. Specifically, we use global features such as color ratios and dominant sub-image colors for preliminary filtering. Then, local features such as Scale-Invariant Feature Transform (SIFT) descriptors are extracted for similarity matching. This design can achieve good effectiveness with reasonable processing time in practical systems. Our experimental results showed good accuracy in retrieving similar images and extracting relevant tags from similar images.

Moving Object Tracking using Cumulative Similarity Transform (누적 유사도 변환을 이용한 물체 추적)

  • Choo, Moon-Won
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 2003
  • In this paper, an object tracking system in a known environment is proposed. It extracts moving area shaped on objects in video sequences and decides tracks of moving objects. Color invarianoe features are exploited to extract the plausible object blocks and the degree of radial homogeneity, which is utilized as local block feature to find out the block correspondences. The experimental results are given.

  • PDF

Multiple Object Tracking using Color Invariants (색상 불변값을 이용한 물체 괘적 추적)

  • Choo, Moon Won;Choi, Young Mie;Hong, Ki-Cheon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.101-109
    • /
    • 2002
  • In this paper, multiple object tracking system in a known environment is proposed. It extracts moving areas shaped on objects in video sequences and detects racks of moving objects. Color invariant co-occurrence matrices are exploited to extract the plausible object blocks and the correspondences between adjacent video frames. The measures of class separability derived from the features of co-occurrence matrices are used to improve the performance of tracking. The experimented results are presented.

  • PDF

Mongolian Traditional Stamp Recognition using Scalable kNN

  • Gantuya., P;Mungunshagai., B;Suvdaa., B
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.170-176
    • /
    • 2015
  • The stamp is one of the crucial information of traditional historical and cultural for nations. In this paper, we purpose to detect official stamps from scanned document and recognize the Mongolian traditional, historical stamps. Therefore we performed following steps: first, we detect official stamps from scanned document based on red-color segmentation and document standard. Then we collected 234 traditional stamp images with 6 classes and 100 official stamp images from scanned document images. Also we implemented the processing algorithms for noise removing, resize and reshape etc. Finally, we proposed a new scale invariant classification algorithm based on KNN (k-nearest neighbor). In the experimental result, our proposed a method had shown proper recognition rate.

Content-Based Image Retrieval using Third Order Color Object Relation (3차 칼라 객체 관계에 의한 내용 기반 영상 검색)

  • Kwon, Hee-Yong;Choi, Je-Woo;Lee, In-Heang;Cho, Dong-Sub;Hwang, Hee-Yeung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • In this paper, we propose a criteria which can be applied to classify conventional color feature based Content Based Image Retrieval (CBIR) methods with its application areas, and a new image retrieval method which can represent sufficient spatial information in the image and is powerful in invariant searching to translation, rotation and enlargement transform. As the conventional color feature based CBIR methods can not sufficiently include the spatial information in the image, in general, they have drawbacks, which are weak to the translation or rotation, enlargement transform. To solve it, they have represented the spatial information by partitioning the image. Retrieval efficiency, however, is decreased rapidly as increasing the number of the feature vectors. We classify conventional methods to ones using 1st order relations and ones using 2nd order relations as their color object relation, and propose a new method using 3rd order relation of color objects which is good for the translation, rotation and enlargement transform. It makes quantized 24 buckets and selects 3 high scored histogram buckets and calculates 3 mean positions of pixels in 3 buckets and 3 angles. Then, it uses them as feature vectors of a given image. Experiments show that the proposed method is especially good at enlarged images and effective for its small calculation.

  • PDF

A Study on Feature Information Parsing of Video Image Using Improved Moment Invariant (향상된 불변모멘트를 이용한 동영상 이미지의 특징정보 분석에 관한 연구)

  • Lee, Chang-Soo;Jun, Moon-Seog
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.450-460
    • /
    • 2005
  • Today, multimedia information is used on the internet and various social areas by rapid development of computer and communication technology. Therefor, the usage is growing dramatically. Multimedia information analysis system is basically based on text. So, there are many difficult problems like expressing ambiguity of multimedia information, excessive burden of works in appending notes and a lack of objectivity. In this study, we suggest a method which uses color and shape information of multimedia image partitions efficiently analyze a large amount of multimedia information. Partitions use field growth and union method. To extract color information, we use distinctive information which matches with a representative color from converting process from RGB(Red Green Blue) to HSI(Hue Saturation Intensity). Also, we use IMI(Improved Moment Invariants) which target to only outline pixels of an object and execute computing as shape information.

  • PDF