• Title/Summary/Keyword: Color holography

Search Result 12, Processing Time 0.037 seconds

Optical Reconstruction of Full-color Optical Scanning Holography Images using an Iterative Direct Binary Search Algorithm

  • Lee, Eung Joon;Cho, Kwang Hun;Kim, Kyung Beom;Lim, Seung Ram;Kim, Taegeun;Kang, Ji-Hoon;Ju, Byeong-Kwon;Park, Sang-Ju;Park, Min-Chul;Kim, Dae-Yeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1845-1848
    • /
    • 2018
  • We introduce a process for optically reconstructing full-color holographic images recorded by optical scanning holography. A complex RGB-color hologram was recorded and converted into a binary hologram using a direct binary search (DBS) algorithm. The generated binary hologram was then optically reconstructed using a spatial light modulator. The discrepancies between the reconstructed object sizes and colors due to chromatic aberration were corrected by adjusting the reconstruction parameters in the DBS algorithm. To the best of our knowledge, this represents the first optical reconstruction of a full-color hologram recorded by optical scanning holography.

New LEDs improve the quality of illumination of full-color holograms recorded with red 660 nm, green 532 nm and blue 440 nm lasers

  • Gentet, Philippe;Gentet, Yves;Joung, Jinbeom;Park, Sungchul;Park, Misoo;Lee, Seunghyun
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.274-282
    • /
    • 2019
  • This paper discusses the main requirements in today's full-color holograms illumination and evaluates the last generation of LEDs, the actual best light source to render properly the colors of the holograms and in particular those recorded with red 660 nm, green 532 nm and blue 440 nm lasers. This paper presents also the first prototype of lamp designed especially for this kind of holograms.

Diffraction Efficiency Analysis of Silver Halide Film for Color Holography Recording

  • Park, Sung Chul;Kim, Sang Il;Son, Kwang Chul;Kwon, Soon Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.16-27
    • /
    • 2015
  • Holography technology which was developed by Dennis Gabor (1900~1979) in 1948 is a technology to record wave planes of actual 3D objects. It is known as the only technology which can express 3D information most perfectly close to human-friendly. Holography technology is widely used in advertisement, architecture and arts as well as science technology areas. Especially, digital holographic print which is an applied area is greatly used in military map, architecture map and cultural asset restoration by printing and reproducing 3D information. Holography is realized by recording and reproducing the amplitude and phase information on high resolution film using coherent light like laser. Recording materials for digital holographic printer are silver halide, photoresist and photopolymer. Because the materials have different diffraction efficiency according to film characteristics of each manufacturer, appropriate guide lines should be suggested through efficiency analysis of each film. This paper suggests appropriate guide lines through the diffraction efficiency measurement of silver halide which is a holographic printer recording medium. And the objective of this study is to suggest appropriate guide lines through diffraction efficiency analysis of Ultimate 08-C and PFG-03C which are commercially used. The experiment was prepared by self-diffraction efficiency system which measures the strength with the defector by penetrating RGB recording medium and concentrating diffracted beams through collimating lens. The experiment showed Geola's PFG-03C which is a silver halide for full color has price/performance advantage in optical hologram recording, but recording angles and reproduction angles are irregular for digital holographic printer recording. Ultimate's Ultimate08-C for full color shows its diffraction efficiency is relatively stable and high according to recording angles and laser wavelength.

Digital Holography - Principles and Challenges of Holographic Projection Systems

  • Schwerdtner, A.;Olaya, J.C.;Haussler, R.;Leister, N.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1753-1756
    • /
    • 2007
  • In the field of 3D display, holographic displays are the only technology allowing optimal user comfort. We have developed systems based on compact projection optics, that allow advantageous new features, like large size full-color3D scenes generated at high rate on a micro-display with state of the art resolution.

  • PDF

Study of Three-dimensional Display System Based on Computer-generated Integral Photography

  • Lee, Byoung-Ho;Jung, Sung-Yong;Min, Sung-Wook;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.43-48
    • /
    • 2001
  • A three-dimensional (3D) display system based on computer-generated integral photography (CGIP) is proposed and its feasibility is discussed. Instead of the pickup process in conventional If, the elemental images of imaginary objects are computer-generated. Using these images, we observed autostereoscopic 3D images in full color and full parallax. The lateral and depth resolutions of the integrated images are limited by some factors such as the image position, object thickness, the lens width, and the pixel size of display panel.

Study of Three-Dimensional Display System Based on Computer-Generated Integral Photography

  • Lee, Byoung-Ho;Jung, Sung-Young;Min, Sung-Wook;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • A three-dimensional (3D) display system based on computer-generated integral photography (CGIP) is proposed and its feasibility is discussed. Instead of the pickup process in conventional IP, the elemental images of imaginary objects are computer-generated. Using these images, we observed autostereoscopic 3D images in full color and full parallax. The lateral and depth resolutions of the integrated images are limited by some factors such as the image position, object thickness, the lens width, and the pixel size of display panel.

Digital Holography for 3D Color Display of Real Objects incoherently illuminated

  • Yatagai, Toyohiko;Sando, Yusuke
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.117-120
    • /
    • 2005
  • The proposed method is based on extracting information from 3-D Fourier spectra calculated from some projection incoherent images. Three colored computer-generated holograms (CGHs) are synthesized from 3-D Fourier spectra. Optically reconstructed full-color images are presented.

  • PDF

Expanded Exit-Pupil Holographic Head-Mounted Display With High-Speed Digital Micromirror Device

  • Kim, Mugeon;Lim, Sungjin;Choi, Geunseop;Kim, Youngmin;Kim, Hwi;Hahn, Joonku
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.366-375
    • /
    • 2018
  • Recently, techniques involving head-mounted displays (HMDs) have attracted much attention from academia and industry owing to the increased demand for virtual reality and augmented reality applications. Because HMDs are positioned near to users' eyes, it is important to solve the accommodation-vergence conflict problem to prevent dizziness. Therefore, holography is considered ideal for implementing HMDs. However, within the Nyquist region, the accommodation effect is limited by the space-bandwidth-product of the signal, which is determined by the sampling number of spatial light modulators. In addition, information about the angular spectrum is duplicated over the Fourier domain, and it is necessary to filter out the redundancy. The size of the exit-pupil of the HMD is limited by the Nyquist sampling theory. We newly propose a holographic HMD with an expanded exit-pupil over the Nyquist region by using the time-multiplexing method, and the accommodation effect is enhanced. We realize time-multiplexing by synchronizing a high-speed digital micromirror device and a liquid-crystal shutter array. We also demonstrate the accommodation effect experimentally.

A Study on Analysis of Color characteristic of On-line of Game Play Image of according to the Users (온라인 게임 플레이영상의 이용자에 따른 색채 특성 분석 연구)

  • Jang, Hyun-Joo;Jung, Hyung-Won
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.399-404
    • /
    • 2017
  • If game images use colors improper for certain ages, the characteristics of games disappear, and the efficiency of image expression drops. thus a study in color is very important. Nevertheless, there is a lack of research on this subject. In this study, we investigated the difference of color of game images according to users. User group is divided into all users and users over 18 years old. Among the rank of games,10 each from games for all ages and games for non-teen-rated are selected, and the game-playing images are taken as snapshots to have 100 each images each, A total of 2000 images were extracted and the mean values of RGB and HSB of each game were obtained and independent sample t test was performed. The results showed that the RGB color values between the two users were significantly significant. In the future, it is expected that it will be helpful in color selection when developing psychotherapy games and emotional games using color psychology. Furthermore, we will use color image scales to express colors as adjectives, analyze colors in a variety of ways, and investigate the difference in color of game images in each country.