• Title/Summary/Keyword: Color enhancement

Search Result 379, Processing Time 0.026 seconds

Role of linked color imaging for upper gastrointestinal disease: present and future

  • Sang Pyo Lee
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.546-552
    • /
    • 2023
  • Techniques for upper gastrointestinal endoscopy are advancing to facilitate lesion detection and improve prognosis. However, most early tumors in the upper gastrointestinal tract exhibit subtle color changes or morphological features that are difficult to detect using white light imaging. Linked color imaging (LCI) has been developed to overcome these shortcomings; it expands or reduces color information to clarify color differences, thereby facilitating the detection and observation of lesions. This article summarizes the characteristics of LCI and advances in LCI-related research in the upper gastrointestinal tract field.

Adaptive Contrast Ratio Enhancement Algorithm for mobile LCD

  • Shin, Seung-Rok;Hwangr, Hyun-Ha;Bae, Byung-Sung;Kimr, Sung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.794-797
    • /
    • 2007
  • We have developed the adaptive contrast ratio enhancement algorithm for mobile LCD. This algorithm aims at effective contrast ratio enhancement with minimizing degeneration of color and white balance. It also is very simple to fit mobile LCD system.

  • PDF

The color enhancement of natural ruby produced from Mong Hsu (Mong Hsu산 천연루비의 색상 개선)

  • Park Chun-Won;Kim Pan-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.290-297
    • /
    • 2004
  • The color enhancement of natural ruby produced from Mong Hsu were carried out by the heat treatment using gas diffusion. The natural ruby in this paper has a colored patch of which the color ranges from blue to a color close to black. The most favorable heat treatment conditions were as follows; range of temperature $1400~1600^{\circ}C$, duration 12 hrs, $O_2$ atmosphere. The color tone of ruby obtained under the optimum conditions was overall clear red by partial removal of colored patch. From EPMA results, part of blue or black colored patch within ruby were found to occur by charge transfer between $Fe^{2+}{\;}and{\;}Ti^{4+}$ . These results are consistent with the XRF that contents of $Fe(Fe^{2+}{\;}or{\;}Fe^{3+}$) and $Ti^{4+}$ ion to cause a blue or black colored patch after heat treatment became slightly less than with non-treated ruby. The silk formed on the surface of ruby heat treated for 12 hrs at $1700^{\circ}C$ were found to be generated by re-crystallization of rutile $TiO_2$ by XPS analysis.

High-definition Video Enhancement Using Color Constancy Based on Scene Unit and Modified Histogram Equalization (장면단위 색채 항상성과 변형 히스토그램 평활화 방법을 이용한 고선명 동영상의 화질 향상 방법)

  • Cho, Dong-Chan;Kang, Hyung-Sub;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.368-379
    • /
    • 2010
  • As high-definition video is broadly used in various system such as broadcast system and digital camcorder the proper method in order to improve the quality of high-definition video is needed. In this paper, we propose an efficient method to improve color and contrast of high-definition video. In order to apply the image enhancement method to high-definition video, scale-down video of high-definition video is used and the parameter for image enhancement method is computed from small size video. To enhance the color of high-definition video, we apply color constancy method. First, we separate the video into several scenes by cut detection method. Then, we apply color constancy to each scene with same parameter. To improve the contrast of high-definition video, we use union of original image and histogram equalized image, and weight is calculated based on sorting of histogram bins. Finally, the performance of proposed method is demonstrated in experiment section.

Underwater image quality enhancement through Rayleigh-stretching and averaging image planes

  • Ghani, Ahmad Shahrizan Abdul;Isa, Nor Ashidi Mat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.840-866
    • /
    • 2014
  • Visibility in underwater images is usually poor because of the attenuation of light in the water that causes low contrast and color variation. In this paper, a new approach for underwater image quality improvement is presented. The proposed method aims to improve underwater image contrast, increase image details, and reduce noise by applying a new method of using contrast stretching to produce two different images with different contrasts. The proposed method integrates the modification of the image histogram in two main color models, RGB and HSV. The histograms of the color channel in the RGB color model are modified and remapped to follow the Rayleigh distribution within certain ranges. The image is then converted to the HSV color model, and the S and V components are modified within a certain limit. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. The image color also shows much improvement.

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

Adaptive Video Enhancement Algorithm for Military Surveillance Camera Systems (국방용 감시카메라를 위한 적응적 영상화질 개선 알고리즘)

  • Shin, Seung-Ho;Park, Youn-Sun;Kim, Yong-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Surveillance cameras in national border and coastline area often occur the video distortion because of rapidly changing weather and light environments. It is positively necessary to enhance the distorted video quality for keeping surveillance. In this paper, we propose an adaptive video enhancement algorithm in the various environment changes. To solve an unstable performance problem of the existing method, the proposed method is based on Retinex algorithm and uses enhanced curves which is adapted in foggy and low-light conditions. In addition, we mixture the weighted HSV color model to keep color constancy and reduce noise to obtain clear images. As a results, the proposed algorithm improves the performance of well-balanced contrast enhancement and effective color restoration without any quality loss compared with the existing algorithm. We expect that this method will be used in surveillance camera systems and offer help of national defence with reliability.

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.

The Color Enhancement of Brown Tinted Diamonds with Annealing Temperatures in 5.6 Gpa-10 min HPHT (천연 갈색다이아몬드의 5.6 Gpa-10분 조건에서 처리온도에 따른 색 변화 연구)

  • Li, Feng;Song, Oh-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • The color of a natural diamond that contains nitrogen impurities can be enhanced by a high pressure high temperature (HPHT) treatment. Type IaAB diamond samples containing nitrogen impurities were executed by HPHT process of 5.6 Gpa, 10 min by varying the annealing temperature at 1600, 1650, and $1700^{\circ}C$. Property characterization was carried out using an optical microscope, FT-IR spectrometer, low-temperature PL spectrometer, and micro Raman spectrometer. By observing optical micrographs, it can be seen that diamond sample began to alter its color to vivid yellow at $1700^{\circ}C$. In the FT-IR spectrum, there were no Type changes of the diamond samples. However, amber centers leading to brown colors lessened after $1700^{\circ}C$ annealing. In the PL spectrum, all the H4 centers became extinct, while there were no changes of yellow color center H3 before or after treatment. In the Raman spectrum, no graphite spots were detected. Consequently, diamond color enhancement can be done by higher than $1700^{\circ}C$ HPHT annealing at 5.6 GPa-10 min.

Digital Image Processing for Dynamic Color Images of Laryngeal Lesions Obtained With Electronic Videoendoscopy

  • Kawaida, Masahiro
    • Proceedings of the KSLP Conference
    • /
    • 1998.11a
    • /
    • pp.192-193
    • /
    • 1998
  • Introduction : Laryngeal lesions were observed using the OLYMPUS EVIS-200 electronic videoendoscope system attached to the OLYMPUS ENF-200 rhinolarynx endoscope portion. This endoscope portion can be introduced into the laryngeal cavity by inserting it through the nasal passages. Since it is also possible to connect the OLYMPUS EVIP-230 digital image processor capable of processing dynamic images in real time to this system, an attempt has also been made to process the dynamic color images of laryngeal lesions obtained with the electronic videoendoscope system. Structure enhancement and color enhancement were peformed as processing images. The images of laryngeal lesions obtained with this system and the processed images are presented and described from the standpoint of diagnostic usefulness (omitted)

  • PDF