The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.
This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and b were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and $70^{\circ}C$, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and b (70.08) were at the pH and temperature of 3.43 and $54.8^{\circ}C$, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of $50.4^{\circ}C$ were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.
Statement of problem: Ceramic restorations should be made of porcelain layers of different opacity, shade, and thickness in order to provide a natural appearance. Lithium disilicate glass-ceramic system has superior color reproducibility, because it uses the ceramic ingot which is similar to teeth shade and uses the staining technique and layering technique. However, staining technique has a fault of discoloration. Also, porcelain is divided core and dentin layer, it is not enough to study about the influence of porcelain layer thickness and shade on the shade of ceramic restorations. Purpose: The purpose of this study was to evaluate the influence of porcelain layer thickness and color on the final shade of ceramic restorations. Materials and method: The CIE $L^*a^*b^*$(CIELAB) values of 72 assembled specimens, each consisting of 3 discs (enamel porcelain 0.2 mm/dentin porcelain -1.2, 0.9, 0.7, 0.5 or 0.3 mm/ceramic core -0.3, 0.5, 0.7, 0.9 or 1.2 mm, diameter is 1.0 mm) were evaluated with a spectrophotometer (Model Chromaview 300, Spectron Tech Co, Korea) for the shade A1, A2, A3 and A4. Distilled water (refractive index: 1.7) was used to attain optical contact between the layers. White, white gray, and white brown backgrounds were used to assess the influence of the background on the final shade. And the mean color difference value$({\Delta}E)$ was calculated. Results and conclusion: The results obtained from this study were as follows. 1. There was a significant correlation between the thickness ratio of the ceramic core/dentin porcelain system and $L^*,\;a^*\;and\;b^*$ values when the total thickness of specimen combination was smaller than 1.4 mm(P<0.05). 2. The specimen which the ceramic core thickness was more than 0.7 mm had the best masking effect against background colors. 3. The mean color difference value$({\Delta}E)$ is smaller than 2 $({\Delta}E<2)$ when the ceramic core thickness was larger than 0.7 mm and the total thickness of specimen was more than 1.4 mm.
In this paper, we propose an automatic segmentation of the meniscus based on active shape model using interpolated shape information in MR images. First, the statistical shape model of meniscus is constructed to reflect the shape variation in the training set. Second, the generation technique of interpolated shape information by using the weight according to shape similarity is proposed to robustly segment the meniscus with large variation. Finally, the automatic meniscus segmentation is performed through the active shape model fitting. For the evaluation of our method, we performed the visual inspection, accuracy measure and processing time. For accuracy evaluation, the average distance difference between automatic segmentation and semi-automatic segmentation are calculated and visualized by color-coded mapping. Experimental results show that the average distance difference was $0.54{\pm}0.16mm$ in medial meniscus and $0.73{\pm}0.39mm$ in lateral meniscus. The total processing time was 4.87 seconds on average.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.12
/
pp.168-175
/
2013
Color consistency in stereoscopic contents is important for 3D display systems. Even with a stereo camera of the same model and with the same hardware settings, complex color discrepancies occur when acquiring high quality stereo images. In this paper, we propose an integrated color matching method that use cumulative histogram in global matching and estimated 3D-distance for the stage of local matching. The distance between the current pixel and the target local region is computed using depth information and the spatial distance in the 2D image plane. The 3D-distance is then used to determine the similarity between the current pixel and the target local region. The overall algorithm is described as follow; First, the cumulative histogram matching is introduced for reducing global color discrepancies. Then, the proposed local color matching is established for reducing local discrepancies. Finally, a weight-based combination of global and local matching is computed. Experimental results show the proposed algorithm has improved global and local error correction performance for stereoscopic contents with respect to other approaches.
Kim, Joong-Hyun;Son, Chang-Hwan;Jang, In-Su;Ha, Yeong-Ho
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.6
/
pp.35-46
/
2007
This paper proposes a six-color separation method of reducing unnecessary usage of colorants based on the limitation of total colorant amount and dot visibility ordering. First, the CIELAB values of input RGB image are estimated through the color-mixing model and compared with pre-calculated CIELAB values corresponding to all combination of CMYKlclm colorants with a constraint of color difference, thereby selecting initial CMYKlclm candidates. Next, the limitation on total colorant amount Is imposed on initial CMYKlclm candidates to remove the excessive amounts of colorants, and then final CMYKlclm candidates are determined by minimizing the usage of light cyan and light magenta in the dark region based on the dot visibility ordering of C, M, Y, K, lc, and lm. Through the experiment, the proposed method is shown to reduce the excessive amount of colorants with preserving good image quality.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.41-46
/
2023
Human urine is a process of excreting waste products in the blood, and it is easy to collect and contains various substances. Urinalysis is used to check for diseases, health conditions, and urinary tract infections. There are three methods of urinalysis: physical property test, chemical test, and microscopic test, and chemical test results can be easily confirmed using urine test strips. A variety of items can be tested on the urine test strip, through which various diseases can be identified. Recently, with the spread of smart phones, research on reading urine test strips using smart phones is being conducted. There is a method of detecting and reading the color change of a urine test strip using a smartphone. This method uses the RGB values and the color difference formula to discriminate. However, there is a problem in that accuracy is lowered due to various environmental factors. This paper applies a deep learning model to solve this problem. In particular, color discrimination of a urine test strip is improved in a smartphone using a lightweight CNN (Convolutional Neural Networks) model. CNN is a useful model for image recognition and pattern finding, and a lightweight version is also available. Through this, it is possible to operate a deep learning model on a smartphone and extract accurate urine test results. Urine test strips were taken in various environments to prepare deep learning model training images, and a urine test service application was designed using MobileNet V3.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.5
/
pp.16-22
/
2011
This paper presents the multi-object tracking approach using the background difference and particle filtering by monte carlo sampling. We apply particle filters based on probabilistic importance sampling to multi-object independently. We formulate the object observation model by the histogram distribution using color information and the object dynaminc model for the object motion information. Our approach does not increase computational complexity and derive stable performance. We implement the whole Bayesian maximum likelihood framework and describes robust methods coping with the real-world object tracking situation by the observation and transition model.
Le, Duy;Kim, Su-Jin;Lee, Jong-Min;Nguyen, Anh-Thi;Ha, Vy-Thoai
Proceedings of the KSME Conference
/
2008.11a
/
pp.1053-1056
/
2008
An application of CSG (Constructive Solid Geometry) modeling technique in Machining Simulation is introduced in this paper. The current CSG model is based on z-buffer CSG Rendering Algorithm. In order to build a CSG model, frame buffers of VGA (Video Graphic Accelerator) should be used in term of color buffer, depth buffer, and stencil buffer. In addition to using CSG model in machine simulation Stock and Cutter Swept Surface (CSS) should be solid. Method to create a solid Cuboid stock and Ball-end mill CSS are included in the present paper. Boolean operations are used to produce the after-cut part, especially the Difference operation between Stock and CSS as the cutter remove materials form stock. Finally, a small program called MaSim which simulates one simple cut using this method was created.
Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.