• Title/Summary/Keyword: Color coordinates

Search Result 300, Processing Time 0.027 seconds

Optimization of Wool Dyeing with Yellow Dye from Carthamus Tinctorius L. (홍화 황색소를 이용한 모염색의 최적화)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.1971-1978
    • /
    • 2009
  • This study investigated the adsorption of safflower yellow dye on wool protein fiber and the optimum dyeing conditions to test color reproducibility. In addition, the effects of mordants on dye adsorption, color, fastness, and photofading rate were also studied. The prepared dye in powder form was characterized with UV-vis spectroscopy and FT-IR spectrometric analysis. The color of dyed fabrics was characterized by CIE $L^*a^*b^*$ coordinates, H V/C, and K/S values. The color reproducibility of the dyed wool fabrics was examined. The amount of dye adsorption increased and also, the shade of the dyed wool fabrics became deeper and more saturated with increasing temperature, time, and dye concentration. The maximum color strength was obtained at pH 3.0. The shade of dyed wool fabrics ranged from light yellow to dark mustard yellow as the pH of the dye bath shifted from alkaline to acidic. Color reproducibility was reliable with color differences in the range of 0.53~1.75. Fastness to dry cleaning was relatively good at 4/5 rating irrespective of mordanting. Fe and Cu mordants showed the least color change of the dyed wool fabrics after exposure to light. Mordants did not contribute to improve dye uptake and color fastness, although they made variations in color tone. Safflower yellow dye can be used satisfactorily without mordants and will not cause damage to the environment.

Color comparison between non-vital and vital teeth

  • Greta, Delia Cristina;Colosi, Horatiu Alexandru;Gasparik, Cristina;Dudea, Diana
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.218-226
    • /
    • 2018
  • PURPOSE. The aim of this study was to define a color space of non-vital teeth and to compare it with the color space of matched vital teeth, recorded in the same patients. MATERIALS AND METHODS. In a group of 218 patients, with the age range from 17 to 70, the middle third of the buccal surface of 359 devitalized teeth was measured using a clinical spectrophotometer (Vita Easyshade Advance). Lightness ($L^*$), chromatic parameters ($a^*$, $b^*$), chroma ($C^*$), hue angle (h) and the closest Vita shade in Classical and 3D Master codifications were recorded. For each patient, the same data were recorded in a vital reference tooth. The measurements were performed by the same operator with the same spectrophotometer, using a standardized protocol for color evaluation. RESULTS. The color coordinates of non-vital teeth varied as follows: lightness $L^*$: 52.83-92.93, $C^*$: 8.23-58.90, h: 51.20-101.53, $a^*$: -2.53-24.80, $b^*$: 8.10-53.43. For the reference vital teeth, the ranges of color parameters were: $L^*$: 60.90-97.16, $C^*$: 8.43-39.23, h: 75.30-101.13, $a^*$: -2.36-9.60, $b^*$: 8.36-39.23. The color differences between vital and non-vital teeth depended on tooth group, but not on patient age. CONCLUSION. Non-vital teeth had a wider color space than vital ones. Non-vital teeth were darker (decreased lightness), more saturated (increased chroma), and with an increased range of the hue interval. An increased tendency towards positive values on the $a^*$ and $b^*$ axes suggested redder and yellower non-vital teeth compared to vital ones.

Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials (정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, two types of blue organic light-emitting device were designed. We have analyzed the characteristics of Type I device without a hole blocking layer, and analyzed the characteristics of Type II device using a hole blocking layer of BCP or BAlq materials with 30 ${\AA}$ thickness. We obtained the ITO having the work function value of 5.02 eV using $N_2$ plasma treatment method with the plasma power 200 W. Type I device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li, and type II device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/HBL/$Alq_3$/LiF/Al:Li. We have analyzed the characteristics of Type I and Type II device. The characteristics of the device were most efficiency on occasion of using a hole blocking layer of BAlq material with 30 ${\AA}$ thickness. Current density was 226.75 $mA/cm^2$, luminance was 10310 $cd/m^2$, Current efficiency was 4.55 cd/A, power efficiency was 1.43 lm/W at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device was 456nm. The full-width at half-maximum (FWHM) for the EL spectra was 57nm. CIE color coordinates were x=0.1438 and y=0.1580, which was similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

A Study on the Characteristic Analysis of Blue OLED for the Luminous Traffic Safety Mark (발광형 교통안전표지용 청색 OLED의 특성분석에 관한 연구)

  • Kang, Myung-Goo;Kim, Jung-Yeoun;Oh, Hwan-Sool
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2007
  • Luminous traffic safety mark is restricted to use only the place that has a thick fog, many night traffic accidents, limited field of view due to structure of road. Recently, LEDs are used for luminous traffic safety mark, but we propose an organic LED for a novel luminous traffic safety mark in the near future. The device structure was $ITO/2-TNATA(500{\AA})/{\alpha}-NPD(200{\AA})/DPVBi(300{\AA})/BCP(10{\AA})/Alq_3(200{\AA})/LiF(10{\AA})/Al:Li(1000{\AA})$. The characteristics of the device are most efficient on occasion of using $N_2$ gas plasma treatment. Current density is $240.71mA/cm^2$ luminance $10,550cd/m^2$, and current efficiency 3.53cd/A at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device is 456nm. CIE color coordinates are x=0.1449 and y=0.1633, which is similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

  • PDF

Photometry Data Compression for Three-dimensional Mesh Models Using Connectivity and Geometry Information (연결성 정보와 기하학 정보를 이용한 삼차원 메쉬 모델의 광학성 정보 압축 방법)

  • Yoon, Young-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.160-174
    • /
    • 2008
  • In this paper, we propose new coding techniques for photometry data of three-dimensional(3-D) mesh models. We make a good use of geometry and connectivity information to improve coding efficiency of color, normal vector, and texture data. First of all, we determine the coding order of photometry data exploiting connectivity information. Then, we exploit the obtained geometry information of neighboring vortices through the previous process to predict the photometry data. For color coding, the predicted color of the current vertex is computed by a weighted sum of colors for adjacent vortices considering geometrical characteristics between the current vortex and the adjacent vortices at the geometry predictor. For normal vector coding, the normal vector of the current vertex is equal to one of the optimal plane produced by the optimal plane generator with distance equalizer owing to the property of an isosceles triangle. For texture coding, our proposed method removes discontinuity in the texture coordinates and reallocates texture image segments according to the coding order. Simulation results show that the proposed compression schemes provide improved performance over previous works for various 3-D mesh models.

Performance Comparison of the Recognition Methods of a Touched Area on a Touch-Screen Panel for Embedded Systems (임베디드 시스템을 위한 터치스크린 패널의 터치 영역 인식 기법의 성능 비교)

  • Oh, Sam-Kweon;Park, Geun-Duk;Kim, Byoung-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2334-2339
    • /
    • 2009
  • In case of an embedded system having an LCD panel with touch-screen capability, various figures such as rectangles, pentagons, circles, and arrows are frequently used for the delivery of user-input commands. In such a case, it is necessary to have an algorithm that can recognize whether a touched location is within a figure on which a specific user-input command is assigned. Such algorithms, however, impose a considerable amount of overhead for embedded systems with restricted amount of computing resources. This paper first describes a method for initializing and driving a touch-screen LCD and a coordinate-calibration method that converts touch-screen coordinates into LCD panel coordinates. Then it introduces methods that can be used for recognizing touched areas of rectangles, many-sided figures like pentagons, and circles; they are a range checking method for rectangles, a crossing number checking method for many-sided figures, a distance measurement method for circles, and a color comparison method that can be applied to all figures. In order to evaluate the performance of these methods, we implement two-dimensional graphics functions for drawing figures like triangles, rectangles, circles, and images. Then, we draw such figures and measures times spent for the touched-area recognition of these figures. Measurements show that the range checking is the most suitable method for rectangles, the distance measurement for circles, and the color comparison for many-sided figures and images.

Proposal for a gingival shade guide based on in vivo spectrophotometric measurements

  • Polo, Cristina Gomez;Montero, Javier;Casado, Ana Maria Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.239-246
    • /
    • 2019
  • PURPOSE. The purpose of this study was to propose and assess a shade guide for pink gingival aesthetics using a Spanish population sample. MATERIALS AND METHODS. The $L^*$, $C^*$, h, $a^*$ and $b^*$ coordinates of 259 participants were measured using a spectrophotometer in 3 standardized points along the attached gingiva of the maxillary central incisors. A hierarchical clustering analysis was applied to obtain separate solutions regarding the number of shade tabs. For each of the solutions obtained, color differences (${\Delta}E^*$) were calculated using the CIELab and CIEDE2000 formulas, and the proposed shade guide was selected considering (1) the color differences between tabs and (2) the coverage error of each of the solutions. RESULTS. The proposed shade guide consisted of 8 gingival shade tabs and achieved CIELab and CIEDE2000 coverage errors of less than the respective 50:50% acceptability thresholds (${\Delta}E^*=4.6$ units and ${\Delta}E_{00}=4.1$). The coordinates for the various gingival shade tabs were as follows: Tab 1: $L^*43.3$, $a^*21.9$, $b^*12.3$ (1.6); Tab 2: $L^*42.9$, $a^*34.1$, $b^*19.1$; Tab 3: $L^*46.5$, $a^*25.8$, $b^*10.9$; Tab 4: $L^*46.5$, $a^*27.3$, $b^*15.1$; Tab 5: $L^*49.6$, $a^*23.5$, $b^*16.8$; Tab 6: $L^*51.5$, $a^*19.7$, $b^*13.6$; Tab 7: $L^*55.9$, $a^*22.0$, $b^*15.0$; and Tab 8: $L^*56.0$, $a^*19.9$, $b^*18.8$. CONCLUSION. The CIELab and CIEDE2000 coverage errors for the 8 shade tabs of the proposed gingival shade guide were significantly lower than those of other guides. Therefore, despite the limitations of this study, the proposed guide is more appropriate for matching gingival shade in the Spanish general population.

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

Picture Quality Improvement System to prevent the Saturation and Decoloration using Skin Protection Algorithm(SPA) on CIE 1976 u'v' Chromaticity Coordinates (색상의 포화 및 탈색현상 방지를 위한 CIE 1976 u'v' 색도 좌표에서의 SPA를 이용한 화질개선 시스템)

  • Yang, Jeong-Ju;Yook, Ji-Hong;Choi, Hyun-Chul;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.589-596
    • /
    • 2011
  • Picture Quality Improvement Systems(PQIS) have been developed for user's needs with the development of display technology. Most PQIS change the all input data, so there were some color distortion. In order to compensate such problems, the PQIS using Skin Protection Algorithm(SPA) have been proposed. But the PQIS using SPA is performed simplex color emphasis, as a result occurred color saturation and decoloration. In this paper, we proposed the modified PQIS using SPA on CIE 1976 u'v' chromaticity coordinate. The modified method operated chromaticity extension and reduction at the same time about brightness value to prevent the saturation and decoloration. We evaluated by comparing the conventional method with the proposed method of RGB Gamut variation rate using 42 test image.

Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter (근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Kim, Young-Ho;Lee, Jong-Hwa;Choi, Deuk-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.