• Title/Summary/Keyword: Color Inconsistency Problem

Search Result 5, Processing Time 0.021 seconds

Improved Polynomial Model for Multi-View Image Color Correction (다시점 영상 색상 보정을 위한 개선된 다항식 모델)

  • Jung, Jae-Il;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.881-886
    • /
    • 2013
  • Even though a multi-view camera system is able to capture multiple images at different viewpoints, the color distributions of captured multi-view images can be inconsistent. This problem decreases the quality of multi-view images and the performance of post-image processes. In this paper, we propose an improved polynomial model for effectively correcting the color inconsistency problem. This algorithm is fully automatic without any pre-process and considers occlusion regions of the multi-view image. We use the 5th order polynomial model to define a relative mapping curve between reference and source views. Sometimes the estimated curve is seriously distorted if the dynamic range of extracted correspondences is quite low. Therefore we additionally estimate the first order polynomial model for the bottom and top regions of the dynamic range. Afterwards, colors of the source view are modified via these models. The proposed algorithm shows the good subjective results and has better objective quality than the conventional color correction algorithms.

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM

  • Jung, Jae-Il;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.1-6
    • /
    • 2009
  • Due to the different camera properties of the multi-view camera system, the color properties of captured images can be inconsistent. This inconsistency makes post-processing such as depth estimation, view synthesis and compression difficult. In this paper, the method to correct the different color properties of multi-view images is proposed. We utilize a gray gradient bar on a display device to extract the color sensitivity property of the camera and calculate a look-up table based on the sensitivity property. The colors in the target image are converted by mapping technique referring to the look-up table. Proposed algorithm shows the good subjective results and reduces the mean absolute error among the color values of multi-view images by 72% on average in experimental results.

  • PDF

A Perception-based Color Correction Method for Multi-view Images

  • Shao, Feng;Jiang, Gangyi;Yu, Mei;Peng, Zongju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.390-407
    • /
    • 2011
  • Three-dimensional (3D) video technologies are becoming increasingly popular, as it can provide users with high quality and immersive experiences. However, color inconsistency between the camera views is an urgent problem to be solved in multi-view imaging. In this paper, a perception-based color correction method for multi-view images is proposed. In the proposed method, human visual sensitivity (VS) and visual attention (VA) models are incorporated into the correction process. Firstly, the VS property is used to reduce the computational complexity by removing these visual insensitive regions. Secondly, the VA property is used to improve the perceptual quality of local VA regions by performing VA-dependent color correction. Experimental results show that compared with other color correction methods, the proposed method can greatly promote the perceptual quality of local VA regions greatly and reduce the computational complexity, and obtain higher coding performance.

A study on the evaluation and improvement of ICC e far domestic CRT color monitors (국산 CRT모니터 ICC 프로파일의 평가 및 개선에 관한 연구)

  • 김홍석;박승옥;정연우;김성현
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.452-459
    • /
    • 2001
  • ICC profiles of output devices are necessary to solve the problem of color inconsistency between output devices. Therefore, output device manufacturers are offering ICC profiles that encode each model\`s color characteristics according to the specification decided in ICC (International Color Consortium). In this study, a program that can decode data of ICC profile was composed and evaluated the present condition of ICC profile files of domestic CRT monitor. As a result of comparing the ICC profiles of various model\ulcorner selling since 1999 from LG and Samsung companies, it was found that ICC profiles that are made at a similar time are the same regardless of model\`s specification and in some profiles, extraordinary data are saved. Accordingly, it can be said that current ICC profiles are made independently of the real monitor\`s color characteristics. This paper shows how color characteristics of a real monitor are affected by the control of brightness and color temperature, and proposes that the ICC profile has to be made from the data. measured in the optimum brightness state at each color temperature setting.

  • PDF

Laser Resurfacing after Facial Free Flap Reconstruction

  • Kim, Beom-Jun;Lee, Yun-Whan;You, Hi-Jin;Hwang, Na-Hyun;Kim, Deok-Woo
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • Background and Objectives Skin and soft tissue defects can be treated according to a range of strategies, such as local flap, skin graft, biological dressing, or free flap. On the other hand, free tissue transfer usually leaves a distinct scar with an inconsistency of color or hypertrophy. This problem is highlighted if the defect is located on the face, which could have devastating effects on a patient's psychosocial health. Materials and Methods The authors used an erbium : yttrium-aluminum-garnet (Er:YAG) laser to resurface the free flap skin and match the color with the surrounding facial skin. This study evaluated the effectiveness of laser skin resurfacing on the harmonious color matching of transferred flap. Patients who had undergone laser resurfacing on facial flap skin between January 2014 and December 2018 were reviewed retrospectively. An ablative 2,940-nm fractional Er:YAG laser treatment was delivered to the entire flap skin at 21 J/cm2 with the treatment end-point of pinpoint bleeding. Several months later, the clinical photographs were analyzed. The L*a*b* color co-ordinates of both the flap and surrounding normal skin were measured using Adobe Photoshop. The L*a*b* color difference (ΔE) for the scar and normal surrounding skin were calculated using the following equation: ${\Delta}E=\sqrt{({\Delta}L)^2+({\Delta}a)^2+({\Delta}b)^2}$ Results All five patients were satisfied with the more natural appearance of the flaps. The ΔE values decreased significantly from the pre-treatment mean value of 19.64 to the post-treatment mean value of 11.39 (Wilcoxon signed-rank test, p = 0.043). Conclusion Ablative laser resurfacing can improve the aesthetic outcome of free tissue transfer on the face.