• Title/Summary/Keyword: Color Image Processing

Search Result 1,050, Processing Time 0.037 seconds

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

Analysis of Heat Environment in Nursery Pig Behavior (자돈의 행동에 미치는 열환경 분석)

  • Sang, J.I.;Choi, H.L.;Jeon, J.H.;Jeon, B.S.;Kang, H.S.;Lee, E.S.;Park, K.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • This study was conducted to find ways to control environment with the difference between body temperature and background temperature based on swine activity, and to apply to the environment control system of swine barns based on the findings. Following are the results. 1. Swine activity related to background temperature was achieved as color images and swine activity status was categorized into cold, comfortable, and hot periods with visualization system (thermal image system). 2. Thermal image system consisted of an infrared CCD camera, an image processing board - DIF (TH3100), an main computer (400Hz, 128M, 586 Pentium model) with C++ program installed. 3. Thermal image system categorizing temperatures into cold, comfortable, and hot was applicable to the environment control system of swine barns 4. Feed intake was higher in cold temperature, and finishing weight and weight gain per day in cold temperature were lower than others (p<0.05).

  • PDF

Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier (컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘)

  • Woo, Qui-Hee;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.889-898
    • /
    • 2013
  • Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.

An Algorithm for Segmenting the License Plate Region of a Vehicle Using a Color Model (차량번호판 색상모델에 의한 번호판 영역분할 알고리즘)

  • Jun Young-Min;Cha Jeong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.21-32
    • /
    • 2006
  • The license plate recognition (LPR) unit consists of the following core components: plate region segmentation, individual character extraction, and character recognition. Out of the above three components, accuracy in the performance of plate region segmentation determines the overall recognition rate of the LPR unit. This paper proposes an algorithm for segmenting the license plate region on the front or rear of a vehicle in a fast and accurate manner. In the case of the proposed algorithm images are captured on the spot where unmanned monitoring of illegal parking and stowage is performed with a variety of roadway environments taken into account. As a means of enhancing the segmentation performance of the on-the-spot-captured images of license plate regions, the proposed algorithm uses a mathematical model for license plate colors to convert color images into digital data. In addition, this algorithm uses Gaussian smoothing and double threshold to eliminate image noises, one-pass boundary tracing to do region labeling, and MBR to determine license plate region candidates and extract individual characters from the determined license plate region candidates, thereby segmenting the license plate region on the front or rear of a vehicle through a verification process. This study contributed to addressing the inability of conventional techniques to segment the license plate region on the front or rear of a vehicle where the frame of the license plate is damaged, through processing images in a real-time manner, thereby allowing for the practical application of the proposed algorithm.

A Tracking Algorithm to Certain People Using Recognition of Face and Cloth Color and Motion Analysis with Moving Energy in CCTV (폐쇄회로 카메라에서 운동에너지를 이용한 모션인식과 의상색상 및 얼굴인식을 통한 특정인 추적 알고리즘)

  • Lee, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.197-204
    • /
    • 2008
  • It is well known that the tracking a certain person is a vary needed technic in the humanoid robot. In robot technic, we should consider three aspects that is cloth color matching, face recognition and motion analysis. Because a robot technic use some sensors, it is many different with the robot technic to track a certain person through the CCTV images. A system speed should be fast in CCTV images, hence we must have small calculation numbers. We need the statistical variable for color matching and we adapt the eigen-face for face recognition to speed up the system. In this situation, motion analysis have to added for the propose of the efficient detecting system. But, in many motion analysis systems, the speed and the recognition rate is low because the system operates on the all image area. In this paper, we use the moving energy only on the face area which is searched when the face recognition is processed, since the moving energy has low calculation numbers. When the proposed algorithm has been compared with Girondel, V. et al's method for experiment, we obtained same recognition rate as Girondel, V., the speed of the proposed algorithm was the more faster. When the LDA has been used, the speed was same and the recognition rate was better than Girondel, V.'s method, consequently the proposed algorithm is more efficient for tracking a certain person.

Effects of Low-Level Visual Attributes on Threat Detection: Testing the Snake Detection Theory (저수준 시각적 특질이 위협 탐지에 미치는 효과: 뱀 탐지 이론의 검증)

  • Kim, Taehoon;Kwon, Dasom;Yi, Do-Joon
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.47-62
    • /
    • 2020
  • The snake detection theory posits that, due to competition with snakes, the primate visual system has been evolved to detect camouflaged snakes. Specifically, one of its hypotheses states that the subcortical visual pathway mainly consisting of koniocellular cells enables humans to automatically detect the threat of snakes without consuming mental resources. Here we tested the hypothesis by comparing human participants' responses to snakes with those to fearful faces and flowers. Participants viewed either original images or converted ones, which lacked the differences in color, luminance, contrast, and spatial frequency energies between categories. While participants in Experiment 1 produced valence and arousal ratings to each image, those in Experiment 2 detected target images in the breaking continuous flash suppression (bCFS) paradigm. As a result, visual factors influenced the responses to snakes most strongly. After minimizing visual differences, snakes were rated as being less negative and less arousing, and detected more slowly from suppression. In contrast, the images of the other categories were less affected by image conversion. In particular, fearful faces were rated as greater threats and detected more quickly than other categories. In addition, for snakes, changes in arousal ratings and those in bCFS response times were negatively correlated: Those snake images, the arousal ratings of which decreased, produced increased detection latency. These findings suggest that the influence of snakes on human responses to threat is limited relative to fearful faces, and that detection responses in bCFS share common processing mechanisms with conscious ratings. In conclusion, the current study calls into question the assumption that snake detection in humans is a product of unconscious subcortical visual processing.

A Study on Abalone Young Shells Counting System using Machine Vision (머신비전을 이용한 전복 치패 계수에 관한 연구)

  • Park, Kyung-min;Ahn, Byeong-Won;Park, Young-San;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.415-420
    • /
    • 2017
  • In this paper, an algorithm for object counting via a conveyor system using machine vision is suggested. Object counting systems using image processing have been applied in a variety of industries for such purposes as measuring floating populations and traffic volume, etc. The methods of object counting mainly used involve template matching and machine learning for detecting and tracking. However, operational time for these methods should be short for detecting objects on quickly moving conveyor belts. To provide this characteristic, this algorithm for image processing is a region-based method. In this experiment, we counted young abalone shells that are similar in shape, size and color. We applied a characteristic conveyor system that operated in one direction. It obtained information on objects in the region of interest by comparing a second frame that continuously changed according to the information obtained with reference to objects in the first region. Objects were counted if the information between the first and second images matched. This count was exact when young shells were evenly spaced without overlap and missed objects were calculated using size information when objects moved without extra space. The proposed algorithm can be applied for various object counting controls on conveyor systems.

Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs (복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.786-792
    • /
    • 2010
  • This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.