Browse > Article
http://dx.doi.org/10.14695/KJSOS.2020.23.3.47

Effects of Low-Level Visual Attributes on Threat Detection: Testing the Snake Detection Theory  

Kim, Taehoon (연세대학교 심리학과)
Kwon, Dasom (연세대학교 심리학과)
Yi, Do-Joon (연세대학교 심리학과)
Publication Information
Science of Emotion and Sensibility / v.23, no.3, 2020 , pp. 47-62 More about this Journal
Abstract
The snake detection theory posits that, due to competition with snakes, the primate visual system has been evolved to detect camouflaged snakes. Specifically, one of its hypotheses states that the subcortical visual pathway mainly consisting of koniocellular cells enables humans to automatically detect the threat of snakes without consuming mental resources. Here we tested the hypothesis by comparing human participants' responses to snakes with those to fearful faces and flowers. Participants viewed either original images or converted ones, which lacked the differences in color, luminance, contrast, and spatial frequency energies between categories. While participants in Experiment 1 produced valence and arousal ratings to each image, those in Experiment 2 detected target images in the breaking continuous flash suppression (bCFS) paradigm. As a result, visual factors influenced the responses to snakes most strongly. After minimizing visual differences, snakes were rated as being less negative and less arousing, and detected more slowly from suppression. In contrast, the images of the other categories were less affected by image conversion. In particular, fearful faces were rated as greater threats and detected more quickly than other categories. In addition, for snakes, changes in arousal ratings and those in bCFS response times were negatively correlated: Those snake images, the arousal ratings of which decreased, produced increased detection latency. These findings suggest that the influence of snakes on human responses to threat is limited relative to fearful faces, and that detection responses in bCFS share common processing mechanisms with conscious ratings. In conclusion, the current study calls into question the assumption that snake detection in humans is a product of unconscious subcortical visual processing.
Keywords
Snake Detection Theory; Threat Detection; Valence; Arousal; Continuous Flash Suppression;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gray, K. L. H., Adams, W. J., Hedger, N., Newton, K. E., & Garner, M. (2013). Faces and awareness: Lowlevel, not emotional factors determine perceptual dominance. Emotion, 13(3), 537-544. DOI: 10.1037/a0031403   DOI
2 Hayakawa, S., Kawai, N., & Masataka, N. (2011). The influence of color on snake detection in visual search in human children. Scientific Reports, 1, 80. DOI: 10.1038/srep00080   DOI
3 Hedger, N., Adams, W. J., & Garner, M. (2015). Autonomic arousal and attentional orienting to visual threat are predicted by awareness. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 798-806. DOI: 10.1037/xhp0000051   DOI
4 Hedger, N., Gray, K. L. H., Garner, M., & Adams, W. J. (2016). Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychological Bulletin, 142(9), 934-968. DOI: 10.1037/bul0000054   DOI
5 He, H., Kubo, K., & Kawai, N. (2014). Spiders do not evoke greater early posterior negativity in the eventrelated potential as snakes. NeuroReport, 25(13), 1049-1053. DOI: 10.1097/wnr.0000000000000227   DOI
6 Hendry, S. H., & Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience, 23, 127-153. DOI: 10.1146/annurev.neuro.23.1.127   DOI
7 Hendry, S. H., & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science, 264(5158), 575-577. DOI: 10.1126/science.8160015   DOI
8 Isbell, L. A. (2006). Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 51(1), 1-35. DOI: 10.1016/j.jhevol.2005.12.012   DOI
9 Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. DOI: 10.1016/j.jml.2007.11.007   DOI
10 Jiang, Y., Costello, P., & He, S. (2007). Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression. Psychological Science, 18(4), 349-355. DOI: 10.1111/j.1467-9280.2007.01902.x   DOI
11 Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1-2), 1-19. DOI: 10.1016/0010-0277(91)90045-6   DOI
12 Ju, E. J. (2014). Pre-service elementary teacher’s specific animal phobia and its relationship to biology teaching self-efficacy. Biology Education, 42(3), 237-248. DOI: 10.15717/bioedu.2014.42.3.237   DOI
13 Keil, A., & Ihssen, N. (2004). Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion, 4(1), 23-35. DOI: 10.1037/1528-3542.4.1.23   DOI
14 Kim, S.-Y., Jung, J.-B., & Nam, K.-C. N. (2020). Research on the association between emotional perception bias and deteriorated visuospatial attention allocation ability in increasing the level of social phobia. Science of Emotion & Sensibility, 23(2), 35-50. DOI: 10.14695/KJSOS.2020.23.2.35   DOI
15 Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571-579. DOI: 10.1016/s0166-2236(00)01657-x   DOI
16 Langton, S. R. H., Law, A. S., Burton, A. M., & Schweinberger, S. R. (2008). Attention capture by faces. Cognition, 107(1), 330-342. DOI: 10.1016/j.cognition.2007.07.012   DOI
17 Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans
18 LoBue, V., Buss, K. A., Taber-Thomas, B. C., & Pérez- Edgar, K. (2017). Developmental differences in infants’ attention to social and nonsocial threats. Infancy, 22(3), 403-415. DOI: 10.1111/infa.12167   DOI
19 Maior, R. S., Hori, E., Tomaz, C., Ono, T., & Nishijo, H. (2010). The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behavioural Brain Research, 215(1), 129-135. DOI: 10.1016/j.bbr.2010.07.009   DOI
20 Lobue, V., & DeLoache, J. S. (2008). Detecting the snake in the grass: Attention to fear-relevant stimuli by adults and young children. Psychological Science, 19(3), 284-289. DOI: 10.1111/j.1467-9280.2008.02081.x   DOI
21 Miles, W. R. (1930). Ocular dominance in human adults. The Journal of General Psychology, 3(3), 412-430. DOI: 10.1080/00221309.1930.9918218   DOI
22 Mineka, S., Keir, R., & Price, V. (1980). Fear of snakes in wild- and laboratory-reared rhesus monkeys (Macaca mulatta). Animal Learning & Behavior, 8(4), 653-663. DOI: 10.3758/BF03197783   DOI
23 Moore, P. (2014, March 28). Snakes, heights and public speaking are the top three fears in the Home of the Brave. YouGov. https://today.yougov.com/topics/lifestyle/articles-reports/2014/03/27/argh-snakes
24 Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467-470. DOI: 10.1038/30976   DOI
25 Ohman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483-522. DOI: 10.1037/0033-295x.108.3.483   DOI
26 Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2014). Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neuroscience, 8, 85. DOI: 10.3389/fnbeh.2014.00085   DOI
27 Ohman, A., Carlsson, K., Lundqvist, D., & Ingvar, M. (2007). On the unconscious subcortical origin of human fear. Physiology & Behavior, 92(1-2), 180-185. DOI: 10.1016/j.physbeh.2007.05.057   DOI
28 Ohman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130 (3), 466-478. DOI: 10.1037/0096-3445.130.3.466   DOI
29 Ohman, A., & Mineka, S. (2003). The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Current Directions in Psychological Science, 12(1), 5-9. DOI: 10.1111/1467-8721.01211   DOI
30 Ohman, A., Soares, S. C., Juth, P., Lindström, B., & Esteves, F. (2012). Evolutionary derived modulations of attention to two common fear stimuli: Serpents and hostile humans. Journal of Cognitive Psychology, 24(1), 17-32. DOI: 10.1080/20445911.2011.629603   DOI
31 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437-442. DOI: 10.1163/156856897x00366   DOI
32 R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
33 Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a "low road" to "many roads" of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773-782. DOI: 10.1038/nrn2920   DOI
34 Pessoa, L., Japee, S., & Ungerleider, L. G. (2005). Visual awareness and the detection of fearful faces. Emotion, 5(2), 243-247. DOI: 10.1037/1528-3542.5.2.243   DOI
35 Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2), 175-187. DOI: 10.1016/j.neuron.2005.09.025   DOI
36 Polak, J., Radlova, S., Janovcova, M., Flegr, J., Landova, E., & Frynta, D. (2020). Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. British Journal of Psychology, 111(2), 297-321. DOI: 10.1111/bjop.12409   DOI
37 Rakison, D. H. (2018). Do 5-month-old infants possess an evolved detection mechanism for snakes, sharks, and rodents? Journal of Cognition and Development, 19(4), 456-476. DOI: 10.1080/15248372.2018.1488717   DOI
38 Roth, H. L., Lora, A. N., & Heilman, K. M. (2002). Effects of monocular viewing and eye dominance on spatial attention. Brain, 125(Pt 9), 2023-2035. DOI: 10.1093/brain/awf210   DOI
39 Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805-819. DOI: 10.1037/0022-3514.76.5.805   DOI
40 Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). Emotion and attention: Event-related brain potential studies. Progress in Brain Research, 156, 31-51. DOI: 10.1016/s0079-6123(06)56002-9   DOI
41 Sheth, B. R., & Pham, T. (2008). How emotional arousal and valence influcence access to awareness, Vision Research, 48(23-24), 2415-2424. DOI: 10.1016/j.visres.2008.07.013   DOI
42 Stein, T., Seymour, K., Hebart, M. N., & Sterzer, P. (2014). Rapid fear detection relies on high spatial frequencies. Psychological Science, 25(2), 566-574. DOI: 10.1177/0956797613512509   DOI
43 Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). afex: Analysis of Factorial Experiments. https://CRAN.R-project.org/package=afex
44 Soares, S. C., Lindström, B., Esteves, F., & Ohman, A. (2014). The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. PloS One, 9(12), e114724. DOI: 10.1371/journal.pone.0114724   DOI
45 Sohn, I.-J., Yoon, H.-J., Shin, Y.-B., & Kim, J.-J. (2014). Behavioral characteristics of face recognition for self and others in patients with social phobia. Anxiety and Mood, 10(1), 37-43.
46 Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697-709. DOI: 10.1038/nrn2889   DOI
47 Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657-665. DOI: 10.1080/13506280500410949   DOI
48 Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., Marcus, D. J., Westerlund, A., Casey, B. J., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242-249. DOI: 10.1016/j.psychres.2008.05.006   DOI
49 Troiani, V., & Schultz, R. T. (2013). Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Frontiers in Human Neuroscience, 7, 241. DOI: 10.3389/fnhum.2013.00241   DOI
50 Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096-1101. DOI: 10.1038/nn1500   DOI
51 Van Strien, J. W., & Isbell, L. A. (2017). Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Scientific Reports, 7, 46331. DOI: 10.1038/srep46331   DOI
52 Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19000-19005. DOI: 10.1073/pnas.1312648110   DOI
53 Van Strien, J. W., Eijlers, R., Franken, I. H. A., & Huijding, J. (2014). Snake pictures draw more early attention than spider pictures in non-phobic women: Evidence from event-related brain potentials. Biological Psychology, 96, 150-157. DOI: 10.1016/j.biopsycho.2013.12.014   DOI
54 Van Strien, J. W., Franken, I. H. A., & Huijding, J. (2014). Testing the snake-detection hypothesis: Larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs. Frontiers in Human Neuroscience, 8, 691. DOI: 10.3389/fnhum.2014.00691
55 Vlamings, P. H. J. M., Goffaux, V., & Kemner, C. (2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? Journal of Vision, 9(5), 12.1-13. DOI: 10.1167/9.5.12   DOI
56 Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience, 18(1), 411-418. DOI: 10.1523/jneurosci.18-01-00411.1998   DOI
57 Yang, E., Zald, D. H., & Blake, R. (2007). Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion, 7(4), 882-886. DOI: 10.1037/1528-3542.7.4.882   DOI
58 Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12(10), 1224-1225. DOI: 10.1038/nn.2380   DOI
59 Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods, 42(3), 671-684. DOI: 10.3758/BRM.42.3.671   DOI
60 Winston, J. S., Vuilleumier, P., & Dolan, R. J. (2003). Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Current Biology, 13(20), 1824-1829. DOI: 10.1016/j.cub.2003.09.038   DOI
61 Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436. DOI: 10.1163/156856897x00357   DOI
62 Beligiannis, N., & Van Strien, J. W. (2019). Blurring attenuates the early posterior negativity in response to snake stimuli. International Journal of Psychophysiology, 146, 201-207. DOI: 10.1016/j.ijpsycho.2019.09.002   DOI
63 Alter, A. L., & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13(3), 219-235. DOI: 10.1177/1088868309341564   DOI
64 Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In J. P. Aggleton (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 1-66). New York: Wiley-Liss. DOI: 10.1016/0166-2236(92)90106-i
65 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: 10.18637/jss.v067.i01
66 Brewer, G. (2001, March 19). Snakes Top List of Americans' Fears. Gallup. https://news.gallup.com/poll/1891/snakes-top-list-americans-fears.aspx
67 Cook, M., & Mineka, S. (1990). Selective associations in the observational conditioning of fear in rhesus monkeys. Journal of Experimental Psychology: Animal Behavior Processes, 16(4), 372-389. DOI: 10.1037/0097-7403.16.4.372   DOI
68 Davey, G. C. L. (1994). Self‐reported fears to common indigenous animals in an adult UK population: The role of disgust sensitivity. British Journal of Psychology, 85(4), 541-554. DOI: 10.1111/j.2044-8295.1994.tb02540.x   DOI
69 Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: Evidence from event-related brain potentials. Brain Research: Cognitive Brain Research, 10(1-2), 145-158. DOI: 10.1016/s0926-6410(00)00038-0   DOI
70 Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. DOI: 10.1016/j.jml.2007.12.005   DOI
71 Fredrikson, M., Annas, P., & Wik, G. (1997). Parental history, aversive exposure and the development of snake and spider phobia in women. Behaviour Research and Therapy, 35(1), 23-28. DOI: 10.1016/s0005-7967(96)00076-9   DOI
72 Gayet, S., Stein, T., & Peelen, M. V. (2019). The danger of interpreting detection differences between image categories: A brief comment on "Mind the snake: Fear detection relies on low spatial frequencies" (Gomes, Soares, Silva, & Silva, 2018). Emotion, 19(5), 928-932. DOI: 10.1037/emo0000550   DOI
73 Gayet, S., Van der Stigchel, S., & Paffen, C. L. E. (2014). Breaking continuous flash suppression: Competing for consciousness on the pre-semantic battlefield. Frontiers in Psychology, 5, 460. DOI: 10.3389/fpsyg.2014.00460   DOI
74 Gomes, N., Silva, S., Silva, C. F., & Soares, S. C. (2017). Beware the serpent: The advantage of ecologicallyrelevant stimuli in accessing visual awareness. Evolution and Human Behavior, 38(2), 227-234. DOI: 10.1016/j.evolhumbehav.2016.10.004   DOI
75 Gomes, N., Soares, S. C., Silva, S., & Silva, C. F. (2018). Mind the snake: Fear detection relies on low spatial frequencies. Emotion, 18(6), 886-895. DOI: 10.1037/emo0000391   DOI
76 Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544-549.
77 Grassini, S., Holm, S. K., Railo, H., & Koivisto, M. (2016). Who is afraid of the invisible snake? Subjective visual awareness modulates posterior brain activity for evolutionarily threatening stimuli. Biological Psychology, 121(Pt A), 53-61. DOI: 10.1016/j.biopsycho.2016.10.007   DOI