• Title/Summary/Keyword: Color Correction

Search Result 282, Processing Time 0.03 seconds

Efficient Color Correction for 3D rendered images using Adobe camera raw (Adobe Camera Raw를 이용한 효과적인 3D 렌더 이미지 보정)

  • Yoon, Youngdoo;Choi, Eun-Young
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.425-447
    • /
    • 2013
  • Due to the popularity of digital cameras, there are lots of studies based on ISP(Image Signal Process) and the image correction applications which can easily use for users are being developed. Specially AWB(Automatic White Balance) and Auto exposure are the most interesting fields in ISP function, and they are well used to increase the quality of image. Principles of camera and lighting in 3D program are made based on real camera and lighting. But the functions of automatic exposure and AWB Which are operated in real camera don't work in 3D program. The color correction of images need expertise, it is true that the functions of compositing program are more difficult than the general correction way of digital image. Specially in case of students who studies animation at the university, they make the animation with compositing and rendering without color correction. Thus this research proposed 3D image making process which make to increase the quality of animation, even though the layman can easily correct the color using functions of digital image correction.

Favorite colar correction for color enhancement in color application system (색채 응용 시스템의 색향상을 위한 기호색 보정)

  • 이응주;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1566-1573
    • /
    • 1997
  • In this paper, we propose a favorite color correction algorithm for color enhancement in color application system which represent preferred colors for viewer's demands. The proposed algorithm corrects skin color which is widely used as a reference color for color control of color application system, blue color which is directly related to tri-stimulus values, and green color which has higher visual sensitivity. In the proposed algorithm, the vaiation range of phase detector output voltage was minimized for the favorite color saturation changes, thus the favorite from the burst signal for the phase detector characteristic, thus the favorite color was easilty detected from the other color without overlapping of correctionranges.

  • PDF

Novel Method of Color Correction LUT generation for LCDs

  • Jeong, Jae-Won;Moon, Hoi-Sik;Berkeley, Brian H.;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.997-1000
    • /
    • 2007
  • Achieving white balance is one of the key issues for LCD image quality enhancement. A well-known color correction algorithm is Accurate Color Capture (ACC). Determination of ACC correction values has been time consuming as past methods have required trial-and-error analysis of differences between predicted and measured values. We propose a new ACC value determination method that uses spatially emulated patterns and measured values on patterns.

  • PDF

A Color Correct Method based on Relative Ortho Rectification Precision in High-resolution Aerial Ortho Images (항공정사영상의 상대적인 지상좌표 위치오차에 따른 색상보정)

  • Park, Sung-Hwan;Jung, Hyung-Sup;Jung, Kyungsik;Kim, Kyong-Hwi
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.495-506
    • /
    • 2017
  • This study was carried out to effectively perform relative color correction for high-resolution aerial ortho image. For this study, relative geometrical error between adjacent images was analyzed. The block sum method is proposed to reduce the relative geometrical error. We used the regression coefficients determined based on the block sum size to perform the color correction. As a result, it was confirmed that the relative color correction was visually performed well. Quantitative analysis was performed through histogram similarity analysis. It is proved that block sum method is useful for relative color correction. Particularly, the block sum size was very important to correct color based on the amount of relative geometrical error.

Color Correction for Uniformity Illumination using Multispectral Relighting (멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2017
  • In order to accurately perform multispectral imaging using a multiplexed illumination, intensity of illumination in a scene must be uniform. For image acquisition that requires accurate color information, even if not multispectral imaging, the illumination information must be accurate, and a flat light source or illumination calibration is performed for accurate illumination characteristics. In this paper, we propose a method of color correction to uniformly illuminate an image with non-uniform illumination intensity. The proposed method uses multispectral imaging instead of illumination calibration for color correction. First of all, we perform multispectral imaging with two images obtained from non-uniformity illumination to acquire spectral reflectance. The obtained reflection spectrum is relit as the illumination characteristic of the image obtained from general planar light such as fluorescent light or sunlight. By comparing the image obtained by relighting with the uniformly illuminated image, the non-uniformity of the illumination is confirmed, and the color correction is performed as the image obtained from the uniform image. It is expected that the experimental results will confirm whether the non-uniformity of the illumination is uniformly corrected and reduce the restriction of illumination in obtaining the color information of the image.

A New Illumination Compensation Method based on Color Optimization Function for Generating 3D Volumetric Model (3차원 체적 모델의 생성을 위한 색상 최적화 함수 기반의 조명 보상 기법)

  • Park, Byung-Seo;Kim, Kyung-Jin;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.598-608
    • /
    • 2020
  • In this paper, we propose a color correction technique for images acquired through a multi-view camera system for acquiring a 3D model. It is assumed that the 3D volume is captured indoors, and the position and intensity of the light is constant over time. 8 multi-view cameras are used, and converging toward the center of the space, so even if the lighting is constant, the intensity and angle of light entering each camera may be different. Therefore, a color optimization function is applied to a color correction chart taken from all cameras, and a color conversion matrix defining a relationship between the obtained 8 images is calculated. Using this, the images of all cameras are corrected based on the standard color correction chart. This paper proposed a color correction method to minimize the color difference between cameras when acquiring an image using 8 cameras of 3D objects, and experimentally proved that the color difference between images is reduced when it is restored to a 3D image.

Color Correction in Portable-type Urine Analyzer

  • Kim, Jae-Hyung;Park, Chang-Hee;Lee, Seung-Jin;Jeon, Gye-Rok;Kim, Gi-Ryon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.21-26
    • /
    • 2002
  • Color correction methods of chromaticity coordinates using Color Matching Function (CMF) were studied to develop a device-independent portable-type urine analyzer. The reflection spectra were measured for the degrees of 10 test items of the urine reagent strip (urine strip) to develop a portable-type urine analyzer. A computer simulation was performed to quantitatively distinguish the color reactions of the urine system, by using the spectral power distribution of Light Emitting Diode(LED), the reflection of a urine strip, and spectral sensitivity of a photodiode. To develop a device-independent system, chromaticity coordinates were modified to reduce the color deviations in the urine strip, by using the temperature compensation of LED and the color transformation by CMF. The experimental values obtained by developed urine system exhibited the accuracy above 95% for all color samples.

Color Correction Using Polynomial Regression in Film Scanner (다항회귀를 이용한 필름 스캐너에서의 색보정)

  • 김태현;백중환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • Today, the demand of image acquisition systems grows as the multimedia applications go on increasing greatly. Among the systems, film scanner is one of the systems, which can acquire high quality and high resolution images. However due to the nonlinear characteristic of the light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction mr the scanned digital image is essential in the film scanner. In this paper, polynomial regression method is applied for the color correction to CIE $L^{*}$ $a^{*}$ $b^{*}$ color model data converted from RGB color model data. A1so a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi was implemented by using TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color difference ($\Delta$ $E^{*}$$_{ab}$ ) is reduced from13.48 to 8.46.6.6.6.6.

Features of Yellow Sand in SeaWiFS Data and Their Implication for Atmospheric Correction

  • Sohn, Byung-Ju;Hwang, Seok-Gyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.404-408
    • /
    • 1998
  • Yellow sand event has been studied using SeaWiFS data in order to examine the aerosol optical characteristics in the Yellow Sea and their influences on the atmospheric correction for the ocean color remote sensing. Two SeaWiFS images of April 18 and April 25, 1998, representing Yellow Sand event and clear-sky case respectively, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. SeaWiFS aerosol optical thickness is compared with nearby ground-based sun photometer measurements and also is compared with radiative transfer simulation in conjunction with yellow sand model, examining the performance of NASA's atmospheric correction algorithm in case of the heavy dust event.

  • PDF

Visualization Of Aerial Color Imagery Through Shadow Effect Correction

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Yang, In-Tae;Lee, Kangwon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.64-72
    • /
    • 2004
  • Correction of shadow effects is critical step for image interpretation and feature extraction from aerial imagery. In this paper, an efficient algorithm to correct shadow effects from aerial color imagery is presented. The following steps have been performed to remove the shadow effect. First, the shadow regions are precisely located using the solar position and the height of ground objects derived from LIDAR (Light Detection and Ranging) data. Subsequently, segmentation of context regions is implemented for accurate correction with existing digital map. Next step, to calculate correction factor the comparison between the context region and the same non-shadowed context region is made. Finally, corrected image is generated by correcting the shadow effect. The result presented here helps to accurately extract and interpret geo-spatial information from aerial color imagery

  • PDF