• Title/Summary/Keyword: Colony forming units (CFUs)

Search Result 25, Processing Time 0.027 seconds

Regular Exercise Training Increases the Number of Endothelial Progenitor Cells and Decreases Homocysteine Levels in Healthy Peripheral Blood

  • Choi, Jeong Kyu;Moon, Ki Myung;Jung, Seok Yun;Kim, Ji Yong;Choi, Sung Hyun;Kim, Da Yeon;Kang, Songhwa;Chu, Chong Woo;Kwon, Sang Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.163-168
    • /
    • 2014
  • Endothelial progenitor cells (EPCs) are known to play an important role in the repair of damaged blood vessels. We used an endothelial progenitor cell colony-forming assay (EPC-CFA) to determine whether EPC numbers could be increased in healthy individuals through regular exercise training. The number of functional EPCs obtained from human peripheral blood-derived AC133 stem cells was measured after a 28-day regular exercise training program. The number of total endothelial progenitor cell colony-forming units (EPC-CFU) was significantly increased compared to that in the control group (p=0.02, n=5). In addition, we observed a significant decrease in homocysteine levels followed by an increase in the number of EPC-CFUs (p=0.04, n=5), indicating that the 28-day regular exercise training could increase the number of EPC colonies and decrease homocysteine levels. Moreover, an inverse correlation was observed between small-endothelial progenitor cell colony-forming units (small-EPC-CFUs) and plasma homocysteine levels in healthy men (r=-0.8125, p=0.047). We found that regular exercise training could increase the number of EPC-CFUs and decrease homocysteine levels, thus decreasing the cardiovascular disease risk in men.

Distribution of Alcohol-tolerant Microfungi in Paddy Field Soils

  • Choi, Soon-Young
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.191-195
    • /
    • 2003
  • Ethanol treatment method was attempted for the selective isolation of ethanol-tolerant fungi from two sites of rice paddy fields around Seoul area. The vertical and seasonal fluctuation of the fungal population were also investigated. The ethanol-tolerant fungi were Talaromyces stipitatus, T. flavus var. flavus, T. helicus var. major, Eupenicillium javanicum, Emericellopsis terricolor, Pseudourotium zonatum, Aspergillus flavus, Cladosporium cladosporioides, Penicillium frequentans, P. janthinellum, and P. verruculosum. The most dominant species isolated by this method was T. stipitatus. It was found that the numbers of fungal species and colony forming units(CFUs) of ethanol-tolerant fungi were higher in Ascomycota than in Deuteromycota. A particular tendency appeared the highest CFUs in autumn, but lower in spring and winter. T. stipitatus was the dominant species of ethanol tolerant microfungi. This result would suggest that membrane lipid composition of ethanol-tolerant fungi isolated from the soils may play on important role in the ethanol tolerance.

In vitro Antimicrobial Effects of Silver Nanoparticles on Microorganisms Isolated from Dog with Otitis External

  • Bae, Seul-gi;Yun, Sung-ho;Oh, Tae-ho
    • Journal of Veterinary Clinics
    • /
    • v.34 no.6
    • /
    • pp.425-428
    • /
    • 2017
  • Silver nanoparticles have marked antimicrobial effects on several pathogens and have been used to control bacterial growth in humans. In the present study, we evaluated the antimicrobial efficacy of silver nanoparticles against the common causative pathogens of canine otitis external through counting of colony forming units. Silver nanoparticles showed significant dose-dependent antimicrobial effects on pathogens. In addition, we conducted antimicrobial susceptibility tests and compared the antimicrobial efficacy of silver nanoparticles. Microorganisms with a high resistance to antibiotics were also resistant silver nanoparticle with low concentration ($5{\mu}g/mL$). However, in high concentration ($15{\mu}g/mL$), almost 100% reduction in the number of CFUs of these pathogens was observed.

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

A Study on the Mask Microbial Contamination by Working Environment and Wearing Time (착용자 환경 및 시간에 대한 마스크 미생물 오염 연구)

  • Seo, Hyekyung;Kwon, Young-il;Lee, Seong Yeoun;Kang, Byoung-kab;Myong, Jun-Pyo;Jang, Hoyeong;Kim, HuiJu;Shim, SuA;Park, SungWook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.427-439
    • /
    • 2021
  • Objectives: This study aims to investigate differences in microbial contamination according to the duration and environment of mask wearing. Methods: Forty-five participants were recruited from workers in an offices, multi-purpose facilities, and a schools. After wearing of KF94 mask for two. four, and six hours, the microorganisms adsorbed on the outer and inner layers of the mask were inoculated on BAP(Blood Agar Plate), Chocolate agar, and SDA plates. The bacterial count (CFUs: colony-forming units) cultured in each plate was measured and analyzed for changes in filtration efficiency. Results: The microbial contamination of masks worn in classrooms, offices, and multi-purpose facilities showed a significant difference depending on the environment (p<0.000). The measured CFUs increased significantly according to the time wearing the mask. The difference between the inner and outer layers of the mask was also significant (p<0.05). However, there was no statistical difference in the filtration efficiency of the masks by duration time (p=0.515). Conclusions: Masks worn by workers in the offices, multi-purpose facilities, and schools showed an increase of microbial contamination with the amount of time wearing the mask. The results indicate that the masks used in daily life may have adverse health effects if they are worn for a long time or reused over several days without the realizing that the masks can be contaminated with biological hazards. Guidelines on the safe threshold time for mask use should be established through further research.

PCR Method Based on the ogdH Gene for the Detection of Salmonella spp. from Chicken Meat Samples

  • Jin, Un-Ho;Cho, Sung-Hak;Kim, Min-Gon;Ha, Sang-Do;Kim, Keun-Sung;Lee, Kyu-Ho;Kim, Kwang-Yup;Chung, Duck Hwa;Lee, Young-Choon;Kim, Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.216-222
    • /
    • 2004
  • In a previous paper, the ogdH gene that encodes 2-oxoglutarat dehydrogenase was isolated from Salmonella typhimurium. The catalytic N-terminal region in the enzyme was found to be very specific for the Salmonella species. Therefore, the aim of the present study was to detect S. typhimurium in food sources using primers designed for OGDH-l and OGDH-2 which were based on the salmonella-specific region of the ogdH gene. A simple polymerase chain reaction (PCR) detection method was developed to detect low numbers of S. typhimurium in a chicken meat microbial consortium. Using the ogdH-specific primers under stringent amplification conditions and for gene probe analysis, fewer than 100 colony-forming units (CFUs) were detectable when pure cultures were employed. When the PCR assay was run on S. typhimurium-contaminated meat contents, only the positive meat samples containing as few as 200 CFUs reacted to the assay. The method employed for sample processing is simple and it was determined to provide a sensitive means of detecting trace amounts of S. typhimurium-specific sequences in the presence of mixed meat microbial populations. When compared with six representative intestinal gram-negative bacterial strains in foods, including Vibrio parahaemolyticus, V. vulnificus, Enterobacter cloacae, E. coli O157:H7, Pseudomonas aeruginosa, and Proteus sp., S. typhimurium had a unique and distinct PCR product (796 bp). In conclusion, the two OGDH primers were found to be rapid and sensitive detectors of Salmonella spp for the PCR method.

Efficient Storage of Gorosoe(Acer mono Max.) Sap by Gamma Irradiation (감마선 조사에 의한 고로쇠 수액의 효율적인 저장방법)

  • Seo, Sang-Tae;Oh, Hye-Young;Kang, Ha-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2010
  • Effects of gamma irradiation on microbiological changes of Gorosoe sap were characterized during a post-irradiation storage at $4^{\circ}C$. The aseptically collected sap was irradiated and stored at $4^{\circ}C$ for 0 to 60 days and analysed for standard plate counts and 16S rDNA. There were significant differences in the total number of colony forming units(CFUs) of bacteria between irradiated and non-irradiated control sap. Bacteria of non-irradiated sap were present at levels of $1.5{\times}10^4{\sim}2.3{\times}10^8\;CFU/m{\ell}$, whereas no viable microbial cells were detected in sap after 10 kGy of irradiation during storage. According to the 16S rDNA sequence analysis, bacterial community structures decrease with time and the most abundant strain was Pseudomonas species. Our results suggested that gamma irradiation can be used to enhance the shelf-life of Gorosoe sap.

Antifungal Effect of Obacunone on Candida albicans (Obacunone 황백성분의 Candida albicans에 대한 항진균효과)

  • Han, Yongmoon;Kim, Jeonghyeon
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.383-387
    • /
    • 2013
  • In the present study, we determined the antifungal effect of obacunone isolated from Phellodendri Cortex against Candida ablicans, a pathogenic fungus. The antifungal effect was analyzed by an in-vitro susceptibility test and in a murine model of disseminated candidiasis. Possible mechanism of the antifungal activity was also examined. Analyses of data resulting from the susceptibility test revealed that the compound inhibited C. albicans growth. At 25 ${\mu}g$ obacunone/ml, there was app. 45% reduction of CFUs (colony forming units) as compared to obacunone-untreated C. albicans yeast cells (P<0.01). In the murine model of disseminated candidiasis due to C. albicans, obacunone enhanced resistance of mice against disseminated candidiasis. During an entire period of 30-day observation, control animals all died within 14 days, whereas 60% of obacunone-treated mice survived (P<0.05). In addition, obacunone inhibited the hyphal production, a major virulence factor of C. albicans, from the blastoconidial form. Thus, obacunone appears to have antifungal activity for C. albicans infection. This may possibly be mediated by the blockage of hyphal production.

Recovery of Streptococcus Mutans Biofilm after Photodynamic Therapy with Erythrosine and LED Light Source (Erythrosine과 LED를 이용한 광역동 치료 후 Streptococcus mutans 바이오필름의 회복)

  • Yongwook, Shin;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.149-157
    • /
    • 2022
  • The aim of this study was to evaluate the effects of erythrosine-mediated photodynamic therapy (PDT) on Streptococcus mutans biofilm recovery by counting its colony-forming units (CFUs) and via confocal laser scanning microscopy analysis at different time points following PDT. In PDT, photosensitizer was an erythrosine. S. mutans ATCC25175 biofilms were irradiated using an LED curing light. Chlorhexidine (CHX) was used as positive control. After each antimicrobial treatment, samples were cultured to allow biofilm recovery. Viability was measured by calculating the CFU counts after treatment and after every 3 hours for up to 24 hours. Immediately after treatment, the PDT and CHX groups showed equally significant decreases in S. mutans CFU counts compared to the negative control. After 12 hours of reculture, the PDT group showed no significant difference in the decrease in CFU count compared to the negative control, whereas the CHX group showed significantly lower CFU counts throughout the 24-hour period. Erythrosine-mediated PDT can effectively inhibit S. mutans biofilm formation. However, biofilm recovery occurred earlier in the CHX group after PDT. This study provides insights into the clinical effectiveness of PDT in preventing dental caries.

The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium

  • Cho, Kyungwon;Lee, Si Young;Chang, Beom-Seok;Um, Heung-Sik;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.38-45
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the effect of photodynamic therapy (PDT) using erythrosine and a green light emitting diode (LED) light source on biofilms of Aggregatibacter actinomycetemcomitans attached to resorbable blasted media (RBM) and sandblasted, large-grit, acid-etched (SLA) titanium surfaces in vitro. Methods: RBM and SLA disks were subdivided into four groups, including one control group and three test groups (referred to as E0, E30, E60), in order to evaluate the effect of PDT on each surface. The E0 group was put into $500{\mu}L$ of $20{\mu}M$ erythrosine for 60 seconds without irradiation, the E30 group was put into erythrosine for 60 seconds and was then irradiated with a LED for 30 seconds, and the E60 group was put into erythrosine for 60 seconds and then irradiated with a LED for 60 seconds. After PDT, sonication was performed in order to detach the bacteria, the plates were incubated under anaerobic conditions on brucella blood agar plates for 72 hours at $37^{\circ}C$, and the number of colony-forming units (CFUs) was determined. Results: Significant differences were found between the control group and the E30 and E60 groups (P<0.05). A significantly lower quantity of CFU/mL was found in the E30 and E60 groups on both titanium disk surfaces. In confocal scanning laser microscopy images, increased bacterial death was observed when disks were irradiated for a longer period of time. Conclusions: These findings suggest that PDT using erythrosine and a green LED is effective in reducing the viability of A. actinomycetemcomitans attached to surface-modified titanium in vitro.