• 제목/요약/키워드: Colon cancer cells

검색결과 549건 처리시간 0.024초

고려인삼 중 Petroleum Ether 추출물의 인체 암세포 증식억제효과 (Inhibitory Effect of Petroleum Ether Extract of Panaz Ginseng Root against Growth of Human Cancer Cells)

  • 이선희;황우익
    • Journal of Ginseng Research
    • /
    • 제10권2호
    • /
    • pp.141-150
    • /
    • 1986
  • This study was attempted to screen the cytotoxic activity of petroleum ether ex- tract from panax ginseng root against human colon cancer cells. Two extracts of panax ginseng root, crude and partially purified, were used for this experiment. The crude extract was prepared by extraction with petroleum ether using Soxhlet aparatus for 12 to 15 hours from panax ginseng and the extract was partially purified by silicic acid column with mixture of petroleum ether: ethyl ether (70 : 30, v/v). Three species of human colon cancer cells, HRT-18, HCT-48 and HT-29, were maintained in DMEM (Dulbecco's modified Eagle medium), and the cells were cultured in DMEM containing serial concentration of the crude or partially purified fraction to observe the cytotoxic activity of the both extracts. The effects of incubation time and concentration of the both extracts in culture medium against the growth of the each cancer cell were determined. The results obtained are summarized as follows: 1. The doubling times of the HRT-18, HCT-48 and HT-29 cells were about 20, 24 and 22 hours, respectively. 2, The inhibitory effects of the crude extract on the growth of cancer cells were increased according to the rise of concentration of the extract and incubation time. 3. The inhibitory effect of partially purified fraction on the growth of HRT-18 cell was about 4 times stronger than that of the crude extract under same experimental condition. 4 The inhibitory effects of the crude and purified fraction on the growth of each cancer cell were shown difference by the kind of the cancer cell. In view of the above results, it could be said that the petroleum ether extract of panax ginseng root inhibited the division of the human colon cancer cell, in vitro.

  • PDF

Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer

  • Kim, Eui Joo;Kwon, Kwang An;Lee, Young Eun;Kim, Ju Hyun;Kim, Se-Hee;Kim, Jung Ho
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.288-297
    • /
    • 2018
  • Background: The incidence of colorectal cancer (CRC) is increasing, with metastasis of newly diagnosed CRC reported in a large proportion of patients. However, the effect of Korean Red Ginseng extracts (KRGE) on epithelial to mesenchymal transition (EMT) in CRC is unknown. Therefore, we examined the mechanisms by which KRGE regulates EMT of CRC in hypoxic conditions. Methods: Human CRC cell lines HT29 and HCT116 were incubated under hypoxic (1% oxygen) and normoxic (21% oxygen) conditions. Western blot analysis and real-time PCR were used to evaluate the expression of EMT markers in the presence of KRGE. Furthermore, we performed scratched wound healing, transwell migration, and invasion assays to monitor whether KRGE affects migratory and invasive abilities of CRC cells under hypoxic conditions. Results: KRGE-treated HT29 and HCT116 cells displayed attenuated vascular endothelial growth factor (VEGF) mRNA levels and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) protein expression under hypoxic conditions. KRGE repressed Snail, Slug, and Twist mRNA expression and integrin ${\alpha}V{\beta}6$ protein levels. Furthermore, hypoxia-repressed E-cadherin was restored in KRGE-treated cells; KRGE blocked the invasion and migration of colon cancer cells by repressing $NF-{\kappa}B$ and ERK1/2 pathways in hypoxia. Conclusions: KRGE inhibits hypoxia-induced EMT by repressing $NF-{\kappa}B$ and ERK1/2 pathways in colon cancer cells.

Antiproliferative properties of luteolin against chemically induced colon cancer in mice fed on a high-fat diet and colorectal cancer cells grown in adipocyte-derived medium

  • Park, Jeongeun;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.47-58
    • /
    • 2022
  • Purpose: Obesity and a high-fat diet (HFD) are risk factors for colorectal cancer. We have previously shown that luteolin (LUT) supplementation in HFD-fed mice markedly inhibits tumor development in chemically induced colon carcinogenesis. In this study, we evaluated the anticancer effect of LUT in the inhibition of cell proliferation in HFD-fed obese mice and HT-29 human colorectal adenocarcinoma cells grown in an adipocyte-derived medium. Methods: C57BL/6 mice were fed a normal diet (ND, 11.69% fat out of total calories consumed, n = 10), HFD (40% fat out of total calories consumed, n = 10), HFD with 0.0025% LUT (n = 10), and HFD with 0.005% LUT (n = 10) and were subjected to azoxymethane-dextran sulfate sodium chemical colon carcinogenesis. All mice were fed the experimental diet for 11 weeks. 3T3-L1 preadipocytes and HT-29 cells were treated with various doses of LUT in an adipocyte-conditioned medium (Ad-CM). Results: The weekly body weight changes in the LUT groups were similar to those in the HFD group; however, the survival rates of the LUT group were higher than those of the HFD group. Impaired crypt integrity of the colonic mucosa in the HFD group was observed to be restored in the LUT group. The colonic expression of proliferating cell nuclear antigen and insulin-like growth factor 1 (IGF-1) receptors were suppressed by the LUT supplementation in the HFD-fed mice. The LUT treatment (10, 20, and 40 µM) inhibited the proliferation and migration of HT-29 cells cultured in Ad-CM in a dose-dependent manner, as well as the differentiation of 3T3-L1 preadipocytes. Conclusion: These results suggest that the anticancer effect of LUT is probably due to the inhibition of IGF-1 signaling and adipogenesis-related cell proliferation in colon cancer cells.

A Cytotoxic Activity of Panax Ginseng Extract Against Bome Cancer Cells In Vivo and In Vitro.

  • Hwang, Woo-Ik;Park, Gil-Hong;Paik, Jeong-Mi
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1987년도 Proceedings of Korea-Japan Panax Ginseng Symposium 1987 Seoul Korea
    • /
    • pp.29-37
    • /
    • 1987
  • This study was devised to observe the cytotoxlc activities of petroleum-ether extract of Panax ginseng root(crude Gx) and its partially purified fraction from silicon acid column chromatography(7:3 CX) against sarcoma-180(5-180) and Walker carcinosarcoma 256(Walker 256) in vivo, and murine leukemic lymphocytes(L1210) and human rectal cancer cell(HRT-18) and human colon cancer cells(HT-29 and HCT-48) in vitro . Each cell-line was cultured in medium containing serial concentrations of the crude Gx or 7:3 Gx in vitro. A highly lipid soluble compound in the extract of Panax ginseng root was cytocidal to murine leukemic cells and human colon and rectal cancer cells in vitro In the meantime, ginseng saponin derivatives did not cytotoxic effects at its corresponding concentration. The growth rates of the cancer cells in medium containing ginseng extracts were inhibited gradually to a significant degree roughly in proportion to the increase of the extract concentration. The cytotoxic activity of 7:3 Gx was about 3 times more potent than that of crude Gx, one unit of cytotoxic activity against L121f cells being equivalent to 2.54$\mu\textrm{g}$ and 0.88 $\mu\textrm{g}$ for the crude Gx and 7:3 Gx, respectively. The Rf value of the active compound on silica -gel thin layer chromatography with petroleum-ether/ethyl ether/acetic acid mixture (90:10:1, v/v/v) as a developing solvent was 0.23. The survival times of mice inoculated with S-180 cells were extended about 1.5 to 2 times by the 7:3 Gx treatment compared with their control group. The significantly decreased hemoglobin values of rats after inoculation with Walker 256 were recovered to normal range by oral administration of the crude Gx. The synthetic levels of protein, DNA and RNA in human colon and rectal cancer cells were significantly diminished by treatment with the crude Gx, which can explain a part of the origin of its anticancer activity.

  • PDF

적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구 (Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids)

  • 이승준;김형갑;이향범;문유석
    • 생명과학회지
    • /
    • 제26권11호
    • /
    • pp.1313-1319
    • /
    • 2016
  • 암은 비균질적으로 구성된 세포집합체로 간질세포 및 세포 외 기질로 구성된 미세환경과 상호작용에 의해 발병, 전이, 심화되는 복잡한 질병이다. 하지만, 기존의 2차원 배양 세포 기반 플랫폼이 3차원적 생체 환경과 암의 비균질성을 대표하기 힘든 한계를 극복하기 위해 스페로이드 배양 세포를 비롯한 다양한 플랫폼 개발이 활발해지고 있다. 본 연구에서는 특히 감염, 염증 및 식이적 환경성 영향력에 민감한 HCT-8 대장암 세포주를 기반으로 하여 3차원 스페로이드 배양법을 보다 효과적인 방법으로 개선하고, 대장암 스페로이드 세포를 기반으로 암의 비균질적인 특질과 항암내성 연구의 간단하고 개선된 플랫폼을 제시고자 하였다. 3차원 배양법 최적화를 위해 물리적 배양환경 조성과 배양배지 구성에 따른 스페로이드 형태형성을 비교 분석하고 암 줄기세포군의 증가 양상을 확인한 결과, 필수요소로 구성된 제한 배지와 균일한 형태의 비부착성 표면 배양접시에서 배양된 스페로이드가 균일한 형태의 구형을 형성하고 암 줄기세포군이 증가함을 확인하였다. 대장암 스페로이드 세포를 기반으로 대장암 치료제인 5-Fluorouracil (5-FU)에 대한 화학적 감응성 변화를 측정한 결과, 암 줄기세포가 5-FU에 대한 화학적 감수성 저해의 원인이 되며, 최적배양 조건에서 암 줄기세포의 약제 내성의 표현이 증대되었다. 이는 암줄기세포의 항암제 내성에 대한 잠재적 위험성을 내포하는 것으로, 이 방법론은 감염, 염증 및 식이적 요인과 연관된 대장암 스페로이드 세포 기반 항암제 약물반응을 검증하기 위해 효과적이면서 간소한 시험법으로 활용될 수 있을 것이다.

HT-29 대장암세포에서 Akt 활성 저해에 따른 셀레늄의 세포 증식억제 효과 (Anti-Proliferative Effects of Selenium in HT-29 Colon Cancer Cells via Inhibition of Akt)

  • 박송이;김인섭;이세희;이솔화;정다운;박옥진;김영민
    • 생명과학회지
    • /
    • 제22권1호
    • /
    • pp.55-61
    • /
    • 2012
  • Akt는 세포의 증식과 분화에 관여하며 많은 암종에서 과발현되어 있다는 것이 보고되었다. 본 연구에서는 Akt의 조절을 통한 셀레늄의 HT-29 세포의 세포증식억제 시너지효과를 확인하였다. 셀레늄을 농도별과 시간별로 처리하였을 때 HT-29 세포의 증식이 억제되었고, apoptosis가 일어남을 확인하였다. 셀레늄을 농도별로 처리하여 Western blotting 및 immunofluorescence를 실시한 결과 Akt의 인산화가 저해되었고 COX-2의 발현도 저해되었다. 또한 Akt 저해제인 LY294002를 처리한 결과, HT-29 대장암세포의 증식이 억제되었으며, LY294002를 셀레늄과 병행처리하였을 때 셀레늄에 의한 세포증식억제 효과가 더 강하게 나타나는 것을 확인하였다. Akt siRNA에 의한 Akt의 불활성화는 non-transfected 세포에 비하여 HT-29 세포의 성장을 더 강하게 억제하였으며, Akt가 불활성화 되었을 때 COX-2의 발현 역시 non-transfected 세포에 비하여 감소된 것을 확인하였다. 따라서 HT-29 세포에서 셀레늄의 세포증식억제 효과는 Akt와 COX-2 신호분자의 조절을 통해 일어나며, Akt 의 저해는 셀레늄의 대장암세포증식 억제에 시너지 효과를 나타냄을 확인하였다.

Activation of SAPK and Increase in Bak Levels during Ceramide and Indomethacin-Induced Apoptosis in HT29 Cells

  • Kim, Ju-Ho;Oh, Sae-Ock;Jun, Sung-Sook;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.75-82
    • /
    • 1999
  • It has been reported that activation of sphingomyelin pathway and nonsteroidal anti-inflammatory drugs (NSAIDS) inhibit the promotion of colon carcinoma. Ceramide, a metabolite of sphingomyelin, and indomethacin were shown to induce apoptosis in colon carcinoma cells. However, the mechanisms of ceramide- and indomethacin-induced apoptosis in the colon carcinoma cells are not clearly elucidated. Recent studys showed that indomethacin-induced apoptosis in colon cancer cells through the cyclooxygenase-independent pathways, and that may be mediated by generation of ceramide. In this study, we compared effects of ceramide and indomethacin on important modulators of apoptotic processes in HT29 cells, a human colon cancer cell line. Ceramide and indomethacin induced apoptosis dose- and time- dependently. Ceramide and indomethacin increased stress-activated protein kinase (SAPK) activity, and decreased mitogen-activated protein kinase (MAPK) activity. The expression of Bak was increased by the treatment of ceramide and indomethacin. The expression of other Bcl-2 related proteins (Mcl-1, $Bcl-X_L,$ Bax) which were known to be expressed in colon epithelial cells was not changed during the ceramide- and indomethacin-induced apoptosis. Our results suggest that ceramide and indomethacin share common mechanisms for induction of apoptosis in HT29 cells.

  • PDF

Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

  • Zhu, Jin-Hui;Hong, De-Fei;Song, Yong-Mao;Sun, Li-Feng;Wang, Zhi-Fei;Wang, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1017-1021
    • /
    • 2013
  • The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells

  • Yao, Cheng Wen;Kang, Kyoung Ah;Piao, Mei Jing;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Na, Soo-Young;Jeong, Seung Uk;Boo, Sun-Jin;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.315-320
    • /
    • 2017
  • We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.