• 제목/요약/키워드: Collision-free Algorithm

검색결과 105건 처리시간 0.024초

Efficient algorithm for planning collision free path among polyhedral obstacles

  • Habib, Maki-K.;Asama, Hajime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1004-1008
    • /
    • 1990
  • This research focuses on developing a new and computationally efficient algorithm for free space structuring and planning collision free paths for an autonomous mobile robot working in an environment populated with polygonal obstacles. The algorithm constructs the available free space between obstacles in terms of free convex area. A collision free path can be efficiently generated based on a graph constructed using the midpoints of common free links between free convex area as passing points. These points correspond to nodes in a graph and the connection between them within each convex area as arcs in this graph. The complexity of the search for collision free path is greatly reduced by minimizing the size of the graph to be searched concerning the number of nodes and the number of arcs connecting them. The analysis of the proposed algorithm shows its efficiency in terms of computation ability, safety and optimality.

  • PDF

원형작업공간의 기하투영에 의한 일차 매개 곡선을 이용한 충돌회피 궤적 계획 (A collision-free path planning using linear parametric curve based on circular workspace geometry mapping)

  • 남궁인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.896-899
    • /
    • 1996
  • A new algorithm for planning a collision free path is developed based on linear parametric curve. A collision-free path is viewed as a connected space curve in which the path consists of two straight curve connecting start to target point. A single intermediate connection point is considered in this paper and is used to manipulate the shape of path by organizing the control point in polar coordinate (.theta.,.rho.). The algorithm checks interference with obstacles, defined as GM (Geometry Mapping), and maps obstacles in Euclidean Space into images in CPS (Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The clear area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidean Space. Any points from the clear area of CPS is a candidate for a collision-free path. A simulation of GM for number of cases are carried out and results are presented including mapped images of GM and performances of algorithm.

  • PDF

이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 이수영;이석한;홍예선
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

유전 알고리즘을 이용한 이동로봇의 장애물 회피 (Collision Avolidance for Mobile Robot using Genetic Algorithm)

  • 곽한택;이기성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 1996
  • Collision avoidance is a method to direct a mobile robot without collision when traversing the environment. This kind of navigation is to reach a destination without getting lost. In this paper, we use a genetic algorithm for the path planning and collision avoidance. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is a efficient and effective method when compared with traditional collision avoidance algorithm.

  • PDF

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획 (Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

Collision Avoidance Algorithm for Satellite Formation Reconfiguration under the Linearized Central Gravitational Fields

  • Hwang, InYoung;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.11-15
    • /
    • 2013
  • A collision-free formation reconfiguration trajectory subject to the linearized Hill's dynamics of relative motion is analytically developed by extending an algorithm for gravity-free space. Based on the initial solution without collision avoidance constraints, the final solution to minimize the designated performance index and avoid collision is found, based on a gradient method. Simple simulations confirm that satellites reconfigure their positions along the safe trajectories, while trying to spend minimum energies. The algorithm is applicable to wide range of formation flying under the Hill's dynamics.

ADS-B 메시지를 이용한 충돌 경보 알고리즘에 관한 연구 (A Study for Avoidance Alarm Algorithm with ADS-B Message)

  • 주요한;구성관;홍교영
    • 한국항행학회논문지
    • /
    • 제19권5호
    • /
    • pp.379-388
    • /
    • 2015
  • 1990년대 말 미국에서는 미래 자유비행 기술개발 및 시험을 추진하였고, 이에 국내에서도 2017년까지 자유비행을 실현 할 계획을 수립하였다. 자유비행 실현을 위해서는 항공기 간 충돌의 예방을 위해 항공기 분리보증 (separation assurance)이 필수적이다. 현대 대형 민간항공기는 분리보증을 위해 충돌회피장치(TCAS; traffic collision avoidance system) 운영 및 회피 기동 규칙이 있지만 경량항공기는 비용과 공간 문제로 TCAS를 적용하기 어렵기 때문에 이에 대한 대안이 필요하다. 이에 본 논문에서는 저비용으로 경량화 및 소형화되어 구성된 ADS-B 환경 하를 가정하여 소형항공기에 적합하도록 수정하였고 LABVIEW 프로그램으로 시뮬레이션하여 시험해보았다. 시뮬레이션은 국제항공민간기구에서 제시한 항공기 충돌상황에 대하여 수행하였고, 그 결과 TCAS 기준에 따라 경보발령을 100% 수행하였음을 확인하였다.

Enhanced FFD-AABB Collision Algorithm for Deformable Objects

  • Jeon, JaeHong;Choi, Min-Hyung;Hong, Min
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.713-720
    • /
    • 2012
  • Unlike FEM (Finite Element Method), which provides an accurate deformation of soft objects, FFD (Free Form Deformation) based methods have been widely used for a quick and responsive representation of deformable objects in real-time applications such as computer games, animations, or simulations. The FFD-AABB (Free Form Deformation Axis Aligned Bounding Box) algorithm was also suggested to address the collision handling problems between deformable objects at an interactive rate. This paper proposes an enhanced FFD-AABB algorithm to improve the frame rate of simulation by adding the bounding sphere based collision test between 3D deformable objects. We provide a comparative analysis with previous methods and the result of proposed method shows about an 85% performance improvement.