• Title/Summary/Keyword: Collision Risk Model

Search Result 100, Processing Time 0.027 seconds

A Modification of the Approach to the Evaluation of Collision Risk Using Sech Function

  • Jeong, Tae-Gweon;Chao, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.83-88
    • /
    • 2006
  • Evaluation of collision risk plays a key role in developing the expert system of navigation and collision avoidance. This paper presents a new collision risk model formula that is one modification model on the basis of one approach to the evaluation of collision risk using sech function produced by Prof. Jeong in his relevant $articles^{[2][3][4][5]}$. And as a grope in collision risk evaluation field, this paper applied the new model in appraising the collision risk, suggested how to decide the safe range of own ship’'s action. Moreover this paper also analyzed theoretically how to determine the coefficients as describes in the new modification model formula, and suggested the appropriate values as applicable.

  • PDF

A Modification of the Approach to the Evaluation of Collision Risk Using Sech Function

  • Jeong, Tae-Gwoen;Chao, Chen
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • Evaluation of collision risk plays a key role in developing the expert system of navigation and collision avoidance. This paper presents a new collision risk model formula that is one modification model on the basis of one approach to the evaluation of collision risk using sech function produced in earlier studies. And as a tool of the evaluation field of ship collision, this paper applied the new model in appraising the collision risk and represented how to decide the safe range of own ship's action. Moreover this paper also analyzed theoretically how to determine the coefficients as described in the new modification model, and suggested the appropriate values as applicable.

Development of Collision Risk Evaluation Model Between Passing Vessel and Mokpo Harbour Bridge (통항 선박과 목포 대교의 충돌 위기 평가 모델 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.405-415
    • /
    • 2010
  • To assess the possible collision risk between Mokpo Harbour Bridge, which is under construction, and passing vessels, we proposed Real-Time Bridge-Vessel Collision Model (RT-BVCM) in this paper. The mathematical model of RT-BVCM consists of the causation probability by the vessel aberrancy due to navigation environments, the geometric probability by the structural feature of a bridge relative to a ship size and, the failure probability by the ship collision track and the stopping distance which is not to come to a stop before hitting the obstacles. Then, the probabilistic mathematical model represented as risk index with the risk level from 1 to 5. The merit of the proposed model to the collision model proposed by AASHTO (American Association of State Highway and Transportation Officials) is that it can provide enough time to take adequate collision avoiding action. Through the simulation tests to the two kinds of test ships, 3,000 GT and 10,000 GT, it is cleary found that the proposed model can be used as a collision evaluation model to the passing vessel and Mokpo Harbour Bridge.

Navigation safety domain and collision risk index for decision support of collision avoidance of USVs

  • Zhou, Jian;Ding, Feng;Yang, Jiaxuan;Pei, Zhengqiang;Wang, Chenxu;Zhang, Anmin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.340-350
    • /
    • 2021
  • This paper proposes a decision support model for USVs to improve the accuracy of collision avoidance decision-making. It is formed by Navigation Safety Domain (NSD) and domain-based Collision Risk Index (CRI), capable of determining the collision stage and risk between multiple ships. The NSD is composed of a warning domain and a forbidden domain, which is constructed under the constraints of COLREGs (International Regulations for Preventing Collisions at Sea). The proposed domain based CRI takes the radius of NSD in various encounter situations as threshold parameters. It is found that the value of collision risk in any directions can be calculated, including actual value and risk threshold. A catamaran USV and 6 given vessels are taken as study objects to validate the proposed model. It is found that the judgment of collision stage is accurate and the azimuth range of risk exists can be detected, hence the ships can take direct and effective collision avoidance measures. According to the relation between the actual value of CRI and risk threshold, the decision support rules are summarized, and the specific terms of COLREGs to be followed in each encounter situation are given.

Collision Risk Analysis in Busan Harbour

  • Gug, Seung-Gi;Fukuda, Gen;Cho, A-Ra;Park, Hye-Ri
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • This thesis, concentrates on marine collision risks of the area divided by cells. Using a gas molecular collision calculation model, a collision risk model is proposed. Collision risk is estimated by relative angle, relative speed, and ship's density in the cell. For one week, Automatic Identification System (AIS) data was collected and analyzed on the Busan North Port area. The results indicate a high-risk area at the sea route connection point in Busan North Port. It also shows that twilight is the time of day when most collisions occur. This means that the area is high risk due to the number of collisions and other dangerous factors related to twilight. Although there is still need to consider other risks such as grounding risks, the results of this study are useful to for plotting a risk map for the port.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

UAM Parallel Corridor Collision Risk Analysis based on Collision Risk Model (충돌 위험 모델을 활용한 UAM 평행 항로 충돌 위험 분석)

  • Youn-sil Kim;Joong-won Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.561-567
    • /
    • 2023
  • In this study, the collision risk of the UAM (Urban Air Mobility) corridor was analyzed using a collision risk model applied to the manned aircraft corridor. According to the K-UAM roadmap and operating concept, UAM is expected to fly on a designated route similar to existing manned aircraft operations and operate on two routes, traveling back and forth between the departure point and the destination point. Among domestic manned aircraft routes, the manned aircraft operation between Gimpo Airport and Jeju Airport is similar to this and takes the form of a parallel route with a lateral separation distance between the two routes. In this study, we analyzed the collision risk of the UAM corridor according to the lateral separation distance using a collision risk model used to analyze the collision risk of manned aircraft parallel routes for a similar type of UAM corridor. Based on this, we finally analyzed how many parallel routes could be installed within the width of the Han River, considering the K-UAM demonstration route.

Development of the Risk Assessment Model for Train Collision and Derailment (열차 충돌/탈선사고 위험도 평가모델 개발)

  • Choi, Don-Bum;Wang, Jong-Bae;Kwak, Sang-Log;Park, Chan-Woo;Kim, Min-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1518-1523
    • /
    • 2008
  • Train collision and derailment are types of accident with low probability of occurrence, but they could lead to disastrous consequences including loss of lives and properties. The development of the risk assessment model has been called upon to predict and assess the risk for a long time. Nevertheless, the risk assessment model is recently introduced to the railway system in Korea. The classification of the hazardous events and causes is the commencement of the risk assessment model. In previous researches related to the classification, the hazardous events and causes were classified by centering the results. That classification was simple, but might not show the root cause of the hazardous events. This study has classified the train collision and derailment based on the relevant hazardous event including faults of the train related the accidents, and investigates the causes related to the hazardous events. For the risk assessment model, FTA (fault tree analysis) and ETA (event tree analysis) methods are introduced to assess the risk.

  • PDF

A Study on Trainees' Awareness of Collision Risks (실습생의 충돌위험도 인식에 관한 조사 연구)

  • Kim, So-Ra;Park, Sang-Won;Sim, Hyo-Sang;Kim, Jong-Sung;Park, Young-Soo;Kim, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.488-498
    • /
    • 2022
  • Collision prevention education, which takes up the longest time among officer training courses, is one of the most important training and practice courses for trainees. The purpose of this study is to investigate the trainees' perception of collision risk in order to develop a systematic and quantified collision prevention training course. For this, factors for judging collision risk were derived from previous studies, and each trainee's perspective on collision risk was derived for each scenario through a questionnaire survey for trainees. Using the PARK Model, the same was compared with the collision risk perceived by the officer. Resultingly, it was found that trainees and of icers consider the distance to other ships the most important among collision risk factors. Additionally, although the risk trends of two groups for each scenario were similar, the average risk of trainees (5.39) was higher than that of officers (5.20). However, the trainees perceived a lower level of risk than the officers in certain scenarios, and this is judged to be the result of the trainees' lack of navigational experience. This study is expected to be used as basic data for the development of collision prevention practice education by quantitatively suggesting the difference between the collision risk of trainees and officers respectively.

A Study on the Risk Control Measures of Ship′s Collision (선박충돌사고 위험성 제어방안에 관한 연구)

  • 양원재;고재용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.41-48
    • /
    • 2004
  • Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that ‘ship's collision' is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to propose risk control measures of ship's collision. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision are performed using FSM. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.