• Title/Summary/Keyword: Collision Model

Search Result 814, Processing Time 0.028 seconds

A Model of Collision Point to Estimate Impact Force Related to Piston Slap (피스톤 슬랩 충격력 예측을 위한 충돌점 모델)

  • 조성호;안상태
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.474-479
    • /
    • 2000
  • Piston slap is not only one of the major sources of noise and vibration in internal combustion engines but also a cause of the deterioration of engine performance. The basic mechanism associated with the piston slap seems to be quite simple but the phenomenon is in fact complicated with regard to many mechanical elements associated, First of all the impact force of piston slap must be identified to estimate engine block surface vibration, In this paper model of collision point is proposed to calculate the impact force when slap surface vibration. In this paper model of collision point is proposed to calculate the impact force when slap occurs. The parameters of the model are estimated by employing the concept of point mobility, . The predicted and experimentally observed vibration results confirm that the proposed method is practically useful.

  • PDF

Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody (차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구)

  • Kim, Geo-Young;Koo, Jung-Seo;Park, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

Development of a Model for the Analysis of Occupant Response subjects in Low-Speed Rear-End Collision (저속 후방 추돌에 따른 승객 거동 현상 해석용 모델 개발)

  • 김희석;김영은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.139-150
    • /
    • 2000
  • Although a number of neck injuries are generated, the data which quantify the kinematic response of the human head and cervical spine in low-speed rear-end automobile collisions is very limited. On this problem, just few in vitro experimental research or some experimental research using dummy on neck injury by rear-end collision was conducted, thus systematic research is requested on full scale injury mechanism. An occupant model for the response of the occupant subject to rear-end collision using commercial dynamics package DADS was developed. Developed model shows more close agreement with the experimental data compared with the MADYMO simulation results for the cases of ${\delta}V=16$ kph in sled test. For the case of ${\delta}V=8$ kph and 33.5 kph with production seat, model also shows its reliable response compared with experimental results using Hybrid III and Hybird III with RID.

  • PDF

Collision Avoidance using Model Predictive Control (모델 예측 제어를 활용한 충돌 회피)

  • Choi, Jaewoong;Seo, Jongsang;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.

A Reactive Cross Collision Exclusionary Backoff Algorithm in IEEE 802.11 Network

  • Pudasaini, Subodh;Chang, Yu-Sun;Shin, Seok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1098-1115
    • /
    • 2010
  • An inseparable challenge associated with every random access network is the design of an efficient Collision Resolution Algorithm (CRA), since collisions cannot be completely avoided in such network. To maximize the collision resolution efficiency of a popular CRA, namely Binary Exponential Backoff (BEB), we propose a reactive backoff algorithm. The proposed backoff algorithm is reactive in the sense that it updates the contention window based on the previously selected backoff value in the failed contention stage to avoid a typical type of collision, referred as cross-collision. Cross-collision would occur if the contention slot pointed by the currently selected backoff value appeared to be present in the overlapped portion of the adjacent (the previous and the current) windows. The proposed reactive algorithm contributes to significant performance improvements in the network since it offers a supplementary feature of Cross Collision Exclusion (XCE) and also retains the legacy collision mitigation features. We formulate a Markovian model to emulate the characteristics of the proposed algorithm. Based on the solution of the model, we then estimate the throughput and delay performances of WLAN following the signaling mechanisms of the Distributed Coordination Function (DCF) considering IEEE 802.11b system parameters. We validate the accuracy of the analytical performance estimation framework by comparing the analytically obtained results with the results that we obtain from the simulation experiments performed in ns-2. Through the rigorous analysis, based on the validated model, we show that the proposed reactive cross collision exclusionary backoff algorithm significantly enhances the throughput and reduces the average packet delay in the network.

Ship Collision Avoidance Support Model in Close Quarters Situation(I) (근접상황 선박충돌회피지원모델에 관한 연구(I))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.89-94
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems has proceeded actively. However the frequency of ship collision accidents didn't decreased. If there is collision risk in close quarters situation none the less manouvering ship for collision avoidance according to the system, only use of TCPA and DCPA as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefor it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as foundation study of supporting collision avoidance manoeuvring for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis of collision accidents for effective getting rid of the causes.

  • PDF

Ship Collision Avoidance Support Model in Close Quarters Situation( I ) (근접상황 선박충돌회피지원모델에 관한 연구( I ))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.827-832
    • /
    • 2004
  • Up to now a lot of the study on ship collision avoidance systems have proceeded actively. However the rate of ship collision accidents hasn't decreased yet. If there is collision risk in close quarters situation in spite of maneuvering ship for collision avoidance according to the system, only use of TCP A and DCP A as input factor for collision risk decision is not useful to avoiding collision action. For the recent 5 years by the analysis of first observation distance about approaching ship in domestic collision accidents, nearly $45\%$ of accidents is close first observation less than 2 miles. Therefore it is essential part for safety navigations to study for collision avoidance action in close encounter. In this paper, as a fundamental study of supporting collision avoidance maneuvering for navigators, we proposed ship collision avoidance support model in close quarters situation through analysis qf collision accidents to effectively get rid of the causes.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Verification of Tool Collision for 3-Axis Milling (3축 밀링 가공의 공구 충돌 검증)

  • Chung, Yun-Chan;Park, Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.35-42
    • /
    • 2002
  • Verification of tool collision Is an important issue in die and mold machining. In this paper three functions of verification for 3-axis milling machining are schematically explained. Operators of geometric models are explained at first, which will be used in the functions of verification. The first verification function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Proposed approaches can be easily implemented by using several basic operators of geometric model. An example to calculate collision-free region is presented also.

Collision Analysis of the Full Rake TGV-K on Crashworthiness (TGV-K 전체 차량의 충돌안전도 해석 연구)

  • Koo, Jeong-Seo;Song, Dahl-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-9
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/h against a movable rigid mass of 15 ton).

  • PDF