• Title/Summary/Keyword: Collimator

Search Result 491, Processing Time 0.043 seconds

The Comparison of Glomerular Filteration Rate by Kidney Depth in Dynamic kidney Scan (동적신장검사에서 신장깊이에 따른 사구체여과율 비교)

  • Hwang, Ju-Won;Lim, Young-Hyen;Yun, Jong-Jun;Lee, Hwa-Jin;Lee, Mu-Seok;Jung, Ji-Uk;Park, Se-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.73-77
    • /
    • 2014
  • Purpose Find out about the significance of the GFR values calculated by the kidney depth is measured by comparing the values obtained for kidney depth was measured GFR in the CT image kidney depth and is calculated by Tonnesen law in $^{99m}Tc$-DTPA dynamic kidney scan with each applies. Materials and Methods Among patients with normal value (75~120 mL/min) computed GFR conducted of dynamic renal scan to visit from February 2013 to February 2014 and donor GFR values in patients with normal value. The mean age was 46.9 years with 14 men 13 females. We used abdomen CT image which checked before conducting dynamic Kidney scan for measuring the depth of kidney. We only used CT image that contains renal hilum and measured outermost front of the kidney from the skin surface (a) and the final surface (b) caculated the average depth of [(a + b) / 2] respectively. Using the same ROI in order to limit the change in GFR values by the other additional element was set before and after the depth value was excluded from the GFR falls kidney disease. Results Using Tonnesen law the average value was caculated 5.94 cm from the right kidney 5.90 cm from the left kidney. It was 6.83 cm, 8.71 cm in the left kidney and the right kidney average value of the depth measured on the basis of the CT image. The respective increase in left kidney 0.93 cm and right kidney 2.77 cm calculated on the basis of CT image actually measured values. GFR was calculated as the average depth of the subject calculated by the method Tonnesen $83.3{\pm}9.79mL/min$. $98.6{\pm}14.07mL/min$ GFR was applied to calculate the average depth of the subjects using the CT image, is the difference appears 15.26 mL/min was increased after seting up depth value, P value was less than 0.01 which is significant. Conclusion The difference between GFR before-after setting up depth value cause that the different of depth value. Is a measured depth of the extension value of the calculated estimates Whereas Tonnesen kidney depth method is to use in calculating the value of GFR in a typical dynamic elongation test depth derived using the CT image depth. Is thought to be able to calculate more accurately the GFR value by the distance to the center of kidney more accurately measured in the skin thereby.

  • PDF

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

Feasibility of Two Dimensional Ion Chamber Array for a Linac Periodic Quality Assurance (선형가속기의 품질관리를 위한 2차원이온전리함배열의 유용성)

  • Lee, Jeong-Woo;Hong, Se-Mie;Park, Byung-Moon;Kang, Min-Young;Kim, You-Hyun;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF

A Study of Energy Dependency in Intensity Modulated Radiation Therapy of Lung Cancer (폐암환자의 세기조절방사선치료에서 에너지에 따른 선량분포 특성 비교)

  • Kim, Sung-Kyu;Kim, Myung-Se;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2008
  • PTV considered for the energy, dose distribution exposed to lung and spinal cord, and the characteristic of DVH(Dose Volume Histogram) were compared and investigated by planning the intensity modulated radiation therapy (IMRT) using the photon energies of 6 MV and 10 MV according to tumor location like as the anterior, middle, and posterior regions of lung, and the mediastinum region in lung cancer patients. Our institution installed the linear accelerator (Varian 21 EX-s, USA) equipped with 120 multileaf collimator for lung cancer patients, which is producing the photon energies of 6 MV and 10 MV, and radiation therapy planning was performed with ECLIPSE system (Varian, SomaVision 6.5, USA), which support inverse treatment planning. The tomographic images of 3 mm slice thickness for lung cancer patients were acquired using planning CT, and acquired tomographic images were sent to the Varis system, and then treatment planning was performed in the ECLIPSE system. The radiation treatment planning of the IMRT was processed from various angles according to the regions of the tumor, and using various beam lines according to the size and location of the tumor. The investigation of the characteristic of dose distributions for the energy of 6 MV and 10 MV according to tumor locations in lung cancer patients resulted that the maximum dose of 10 MV energy was 1.2% less than that of 6 MV energy without depending on the tumor location of lung cancer, and the reduction effects of MU were occurred from 10 to 25 MU. Radiation dose exposed to the lung satisfied the less 30% of V20, however radiation dose in 6 MV energy was from 0.1% to 0.5% less than that in 10 MV energy. Radiation dose exposed to the spinal cord for 6 MV energy was from 0.6% to 2.1% less than that for 6 MV energy.

  • PDF

Development of a Method to Measure the Radiation Isocenter Size of Linear Accelerators and Quantitative Analysis of the Radiation Isocenter Size for Clinac 21EX Linear Accelerator (선형가속기 방사선 중심점의 크기 측정 방법 개발과 Clinac 21EX 선형가속기의 방사선 중심점 크기 분석)

  • Jeon, Ho-Sang;Nam, Ji-Ho;Park, Dahl;Kim, Yong-Ho;Kim, Won-Taek;Kim, Dong-Won;Ki, Yong-Kan;Kim, Dong-Hyun
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.131-139
    • /
    • 2011
  • A method to get a size of the radiation isocenter of linear accelerators using star-shot images was presented and a computer program was developed to automate the method. Accuracy of the method was verified. The developed program was used to measure sizes of the radiation isocenters for a Clinac 21EX (Varian, USA) using data of quality assurance (QA) performed from June 2008 to December 2010. To calculated the size of radiation isocenter, positions of two points on each central ray of the star-shot image were found and the equation of the central ray was determined using the positions of two points. Using the equations of central rays the radius of the minimum circle intersecting all the central rays, which is one half of the size of radiation isocenter, was calculated. The program measured x-intercepts and y-intercepts of the central rays within errors of 0.084 mm and sizes of radiation isocenters within 0.053 mm. All the errors were less than the spatial resolution of star-shot images 0.085 mm. The radiation isocenter sizes of Clinac 21EX were $0.33{\pm}0.27mm$, $0.71{\pm}0.36mm$, $0.50{\pm}0.16mm$ for collimator, gantry and couch respectively. During the measurement period all the measured sizes were less than 2.0 mm and within tolerance. The developed program could calculate the size of radiation isocenters and it would be helpful to routine QA.

Nuclear Imaging Evaluation of Galactosylation of Chitosan (핵의학 영상을 이용한 chitosan의 galactosylation 효과에 대한 평가)

  • Jeong, Hwan-Jeong;Kim, Eun-Mi;Park, In-Kyu;Cho, Chong-Su;Kim, Chang-Guhn;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Purpose: Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelator, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Methods and Materials: Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan. Cytotoxicity of $^{99m}Tc$-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with $^{99m}Tc$-GMC and $^{99m}Tc$-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. Results: The results of MTT assay indicated that $^{99m}Tc$-GMC was non-toxic. $^{99m}Tc$-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, $^{99m}Tc$-MC showed faint liver uptake. $^{99m}Tc$-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Conclusion: Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetabililty is a clear example of the great benefit proffered by nuclear imaging.

Usefulness of Flow Composite Image in Raynaud Scan ($^{201}Tl$) ($^{201}Tl$을 이용한 레이노 검사에서 동적 Composite 영상의 유용성)

  • Kim, Dae-Yeon;Shin, Gyoo-Seol;Oh, Eun-Jung;Kim, Gun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.101-104
    • /
    • 2010
  • Purpose: Raynaud scan is divided to flow, blood pool and local-delay image. Usually, we evaluate comparison through blood pool and local-delay image. We will evaluate about usability when comparative observe blood image and local-delay image in Raynaud scan that used $^{201}Tl$ as making flow image to one sheet of images. Materials and Methods: We have selected 29 Raynaud phenomenon patients aged 14~68 years who visited department of vascular surgery between Feb. 2008 and Aug. 2009. An intravenous injection $^{201}Tl$ of 111 MBq (3 mCi) to opposite side diagonal line limbs above an internal auditing department. Equipment used Philips gamma camera forte A-Z, and collimator used LEHR. Matrix size set up to each $64{\times}64$, $128{\times}128$, $256{\times}256$ and zoom factor used to full field. Protocol of dynamic is 2 second to 155 frames. Blood pool and delay count to 300 second. We set up ROI by a foundation to data acquired in PEGASYS processing program. Each results were analyzed with the SPSS 12.0 statistical software. Results: Each averages of count ratio (Rt / Lt) to have been given at composite image, a blood pool image, delay images analyzed at Raynaud phenomenon patients is $1.25{\pm}0.39$, $1.20{\pm}0.33$, $1.11{\pm}0.17$. The sample analysis results of blood pool image and delay image contented itself with p<0.029. Also, there don't have been each difference, and blood pool image, delay image regarding composite image was able to know. Conclusion: We were able to give help for comparison to evaluate a blood pool image and a local delay image at the Raynaud scan which used $^{201}Tl$ while making a flow image to one sheet image. Identification to be visual too was possible. If you are proceeded a researcher that there was further depth, you are more appropriate for, and you may get useful information.

  • PDF