• Title/Summary/Keyword: Collide

Search Result 152, Processing Time 0.03 seconds

Spatial Composition Affecting Bird Collision in Suwon-city, South Korea (수원시의 조류 충돌에 영향을 미치는 공간 구성)

  • Kim, Suryeon;Choi, Jaeyeon;Seo, Jayoo;Kim, Sukyoung;Baek, Jiwon;Song, Wonkyong;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.4
    • /
    • pp.241-249
    • /
    • 2022
  • Humans and wild birds coexist in cities, where habitat fragmentation due to urbanization threatens the habitat and movement of birds. In this study, in order to identify landscape features associated with wild bird collide, we characterized landscape composition within a 500 m radius and points of wild bird carcasses in Suwon-city, South Korea. Dead birds were identified as having a Normalized Difference Vegetation Index (NDVI) of 0.3, Normalized Difference Built-up Index (NDBI) of -0.05, and Normalized Difference Water Index (NDWI) of -0.16 at the points of collide. And there were NDVI of 0.34, NDBI of -0.01, NDWI of -0.18, building height of 13.8 m, and soundproof wall length of 227.3 m within a radius of 500 m. Land cover type was dominated by grassland, used area, and bare land. In particular, the edges of urbanized areas, where apartments bordered forests, reservoirs, and golf courses, were identified as high-risk spaces. In order to minimize bird mortality risk in urban environments, the impact of changes to a vertical landscape should be reviewed from an environmental impact assessment approach. In addition, a preventive management plan that considers the temporal and spatial features that wild animals can safely avoid and adapt to in urbanized spaces should be prepared.

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

Design and Control of a New Micro End-effector for Biological Cell Manipulation

  • Shim, Jae-Hong;Cho, Sung-Yong;Cho, Young-Im;Kim, Deok-Ho;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2445-2450
    • /
    • 2003
  • Recently, biological technology industry shows great development. Instruments and systems related biological technology have been developed actively. In this paper, we developed a new micro end-effector for biological cell manipulation. The existing micro end-effector for biological cell manipulation has not any force sensing mechanism. Usually, excessive contact force occurring when the end-effector and a cell collide might make a damage on the cell. However, unfortunately, user can not notice the condition in case of using the existing end-effector. In order to overcome we proposed the improved micro end-effector having a force sensing mechanism. This paper presents the design concepts of the new micro end-effector. We carried out calibration of the force sensor and tested the performance of the proposed micro end-effector. Through a series of experiments the new micro end-effector shows the possibility of application for precision biological cell manipulation such as DNA operation

  • PDF

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Investigations of Three Dimensional Flow Characteristics in the Liquid Ramjet Combustor using PIV Method (PIV를 이용한 액체램제트 연소기내의 3차원 유동특성 연구)

  • Yang, G.S.;Sohn, C.R.;Cho, D.W.;Kim, G.N.;Moon, S.Y.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.271-275
    • /
    • 2001
  • Three dimensional flow characteristics in a liquid fuel ramjet combustor are investigated using PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vane is installed in each rectangular inlet to improve the flow stability. We made three cases of test combustors in which those inlet angles are 30 degree, 45 degree and 60 degree. Each combustor easily changes the size of combustor's recirculation zone with the replacement of combustors dome. The experiments are performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. PIV software is developed to measure the flow field in the combustor and the accuracy of developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the two main streams from rectangular inlet collide near the plane of symmetry and generate two large longitudinal vortex, A large and complex three-dimensional recirculating flow is measured in the recirculation zone.

  • PDF

Theoreticel Analysis and Design of the Low-Energy Large-Aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치의 이론적 해석 및 설계에 관한 연구)

  • 우성훈;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • We have established a pulsed low-energy large-aIXTture electron beam(LELAEB) generation system with an energy of 2OO[keV], current of 1[A], pulse repetition rate of 200[Hz], and several tens of ${\mu}s$ pulse width. The system is characterized by a cold cathode that is simpler than the hot cathode. Electron beam does not need to be scanned over target objects because of large beam aIXTture of $300[\textrm{cm}^2]$. Electron source is secondary electrons that are generated when the ions from the glow discharge collide on the cathode surface. In this paper, We report about the design and manufacture of LELAEB generation system based on the theoretical analysis in order to study lXlssibility of increasing the efficiency of IELAEB accelerator. We also report on the possibility of large aperture beam current generation and the current density uniformity based on the experiIrental results.esults.

  • PDF

Design of Driver License Simulation Model using 3D Graphics for beginner (운전연습생을 위한 3D 그래픽을 적용한 운전면허 시뮬레이터의 설계)

  • Won, Ji Woon;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 2009
  • Recently, the structure of simulation environment is important issue in all fields. In case of the training for operating the machines which are costly such as airplanes or spaceships, simulators could be helpful for decreasing the costs and training effects by simulating real situation. When we get the driving license, too many peoples are waiting for their turns because of limited cars and testing spaces in Korea. To solve this problem, we've designed and developed the basic design for the simulators. We suggested the Computer 3D Simulation Model for practice of a drives's license. The concept of this simulator was from a 3D Racing-game which suit for driving exercise. We provide users with handle-controlled simulation setting in order that users feel reality as if they drive really through this simulator. We also use 'force-feedback' system which give handle vibration in case users collide against obstacles or exceed the line since users can absorb the simulation program and feel the sense for the real. This paper is the study about modeling the driving exercise model made use of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.

Self-localization for Mobile Robot Navigation using an Active Omni-directional Range Sensor (전방향 능동 거리 센서를 이용한 이동로봇의 자기 위치 추정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.253-264
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of them, and as a result, they may collide with objects moving from the side or behind. To overcome this problem. an Active Omni-directional Range Sensor System has been built that can obtain an omni-directional range data through the use of a laser conic plane and a conic mirror. Also, mobile robot has to know its current location and heading angle by itself as accurately as possible to successfully navigate in real environments. To achieve this capability, we propose a self-localization algorithm of a mobile robot using an active omni-directional range sensor in an unknown environment. The proposed algorithm estimates the current position and head angle of a mobile robot by a registration of the range data obtained at two positions, current and previous. To show the effectiveness of the proposed algorithm, a series of simulations was conducted and the results show that the proposed algorithm is very efficient, and can be utilized for self-localization of a mobile robot in an unknown environment.

  • PDF

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.