• Title/Summary/Keyword: Colletotrichum species complexes

Search Result 3, Processing Time 0.015 seconds

Colletotrichum Diversity within Different Species Complexes Associated with Fruit Anthracnose in South Korea and Their Fungicides In-Vitro Sensitivity (국내 과실 탄저병을 일으키는 종 복합체와 종 다양성 및 살균제 감수성)

  • Taehyun Chang;Oliul Hassan;Jong Yeob Jeon;Chi Hyun Kim;Dae Min Lee;Ju Sung Kim;Eun Chan Kang;Jaewon Kim
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.345-362
    • /
    • 2023
  • Anthracnose, caused by the Colletotrichum genus, comprises a significant number of plant pathogens and poses a major threat to fruit production worldwide, including South Korea. Colletotrichum species were identified associated with anthracnose in fruits such as apple, persimmon, plum, peach, jujube, walnut, and grape. A polyphasic approach, including morphology, multigene phylogenetics, and pathogenicity testing, was used. Additionally, the in-vitro sensitivity of identified Colletotrichum species to common fungicides was also evaluated. A total of nine Colletotrichum species within two complexes, namely gloeosporioides and acutatum, have been identified as the causal agents of anthracnose in common fruits in South Korea. In the gloeosporioides complex, we found Colletotrichumaenigma, C. fructicola, C. gloeosporioides, C. horii, C. siamense, and C. viniferum. Meanwhile, in the acutatum complex, C. fioriniae, C. nymphaeae, and C. orientalis were identified. Notably, C. fructicola, C. siamense, C. fioriniae, and C. nymphaeae were reported for the first time from apple, C. siamense, C. fioriniae and C. nymphaeae from plum, C. siamense, C. fructicola, and C. fioriniae frompeach, C. siamense and C. horii from persimmon, C. fioriniae from Omija (Schisandra), C. orientalis from walnut, C. nymphaeae from jujube, and C. aenigma, C. fructicola, and C. siamense fromgrape. Fungicide sensitivity tests revealed significant variation in the EC50 values among specific Colletotrichum species when exposed to different fungicides. Moreover, the same Colletotrichum species isolated from different host plants displayed varying sensitivity to the same fungicide.

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng;Lee, Noh-Hyun;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2022
  • NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

A Survey on Diseases and Insect Pests in Sweet Persimmon Export Complexes and Fruit for Export in Korea (단감수출단지 과원과 수출단감 병해충 조사)

  • Jung, Young Hak;You, Eun Ju;Son, Daeyoung;Kwon, Jin Hyeuk;Lee, Dong Woon;Lee, Sang Myeong;Choo, Ho Yul
    • Korean journal of applied entomology
    • /
    • v.53 no.2
    • /
    • pp.157-169
    • /
    • 2014
  • Between 2010 and 2012, diseases and insect pests of sweet persimmon were surveyed at sweet persimmon export complexes and non-export orchards in Suncheon, Jeonnam Province; Jinju, Changwon (Dongeup and Bukmyeon), and Gimhae, Gyeongnam Province; and Ulzu, Ulsan. The following diseases were found in the sweet persimmon orchards: angular leaf spot (Cercospora kaki), anthracnose (Colletotrichum gloeosporioides and Colletotrichum acutatum), circular leaf spot (Mycosphaerella nawae), powdery mildew (Phyllactinia kakicola), and gray mold (Botrytis cinerea). Circular leaf spot was the most frequent and serious disease, and C. gloeosporioides and C. acutatum were found on fruits. Thirty-three insect pest species that belonged to 32 genera of 20 families in 5 orders were found in the sweet persimmon orchards; the two-spotted spider mite, Tetranychus urticae, was also found in the surveyed orchards. Apolygus spinolae, Pseudaulacaspis cockerelli, and Adoxophyes orana were widely found in the surveyed orchards; Spodoptera litura and Homona magnanima were also recorded. Damage by insect pests was low, and the quarantine insect pests peach pyralid moth (Dichocrocis punctiferalis) and persimmon fruit moth (Stathmopoda masinissa) were rarely or not found in the sweet persimmon export complexes. In addition, other quarantine insect pests, such as persimmon false spider mite (Tenuipalpus zhizhilashviliae) and Japanese mealybug (Planococcus kraunhiae), were not detected. These quarantine insect pests were also not found in the sorting places, storage houses, and fruits for export; however, scale insects and two-spotted spider mites were found at a low rate. Although anthracnose (C. acutatum) infested fruit was found in the storage houses, only one in Jinju and Gimhae.