• Title/Summary/Keyword: Collecting Electrode

Search Result 40, Processing Time 0.025 seconds

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.

Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode

  • Kim, Kwang Soo;Park, Jung O;Lee, Ju Haeng;Jun, Tae Hwan;Kim, Ilho
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • This study aimed to develop a new dust collecting system equipped with an activated carbon (A.C.) coated electrode. Before fabrication, pre-treatment of A.C. was performed to remove metal ions within the A.C. to enlarge its specific surface area. Then, pre-treated A.C., black carbon, polyvinyl acetate (PVAc), and methanol were mixed to make a gel compound, which was coated onto aluminum plates to fabricate electrodes. The optimal mixing ratio of A.C., black carbon, PVAc, and methanol was found to be 10 g: 2 g: 3 g: 20 mL. After fabrication, the electrodes were used in the batch-type experiment for $NH_3$ and $H_2S$ removal. The reduction rates of the gases were high at the beginning and slowly reduced with time. Dust collection experiments were conducted in continuous flow, with various voltages applied. Compared to 5 kV, dust removal efficiency was 1.5 times higher when 10 kV was applied. Increasing the number of electrodes applied also increased the collecting efficiency. The correlation coefficient between actual collecting efficiency and trend line was higher than 99%. Consequently, the novel dust collection system equipped with A.C. coated electrode appears to be a promising substitute for existing dust-control devices.

A Study on Collecting Electrode Design for Developing Electrostatic Precipitator(ESP) of Urban Railway Underground Tunnels (도시철도 지하터널용 전기집진기 개발을 위한 집진극 형상에 대한 기초연구)

  • Koo, Tae Yong;Kim, Yong Min;Hong, Jung Hee;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this study, the characteristics of turbulent flow and collection efficiency for an one-stage electrostatic precipitator(ESP) with slit type collecting electrode for urban railway underground tunnels were obtained using computational fluid dynamics(CFD) commercial code FLUENT 6.3 and lab-scale experiments. The electrostatic precipitator was operated under high gas velocity(3~12m/s). Five different designs of collecting electrode, flat plate-type and a slit-type of 3mm, 5mm, 7mm and 10mm slit width and four various gas velocity(3, 6, 9, and 12m/s) were used and applied. A standard k-${\varepsilon}$ model in CFD commercial code FLUENT 6.3 was used for flow simulation. The flow simulation results showed that the turbulent intensity of flat plate-type was higher than slit-type under all gas velocity conditions and also the turbulent intensity of flat plate-type was increased continuously, but in case of slit-type was maintained at constant range. And, the turbulent intensity was decreased according to increasing of slit width. The experimental results showed that the collection efficiency of slit-type was higher than flat plate-type under all gas velocity conditions. And, over 6m/s gas velocity condition, the collection efficiency of 5mm and 7mm was highest, when compared to 3mm and 10mm.

Evaluation of Particle Collection Efficiency in a Wet Electrostatic Precipitator Using an Electrosprayed Discharge Electrode (정전분무 방전극을 이용한 습식 전기집진장치의 미세먼지 집진효율 평가)

  • Kim, Hong-Jik;Kim, Jong-Hyeon;Kim, Jong-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • The wet electrostatic precipitator (wet ESP) is an effective control device which removes submicron particles reentrained in a collection plate and water soluble gas. However, its collection efficiency decreases, as its operation is subject to water-induced distortion of the collection electrode. In order to make up for the limitation, we modified the wet ESP system by installing electrosprayed discharge electrodes. The modified wet ESP system can wash both the collection plate and discharge electrode. As a result, we were able to fabricate a compact wet ESP with a small specific collecting area ($0.18m^2(m^3/min)$) that can accomplish a high collection efficiency of fine particles (97.1%). In addition, the device obtained a relatively low specific corona power of approximately $10W/(m^3/min)$.

A Study on Prediction of Collection Efficiency of Electrostatic Precipitator Using Eulerian Numerical Analysis (오일러리안 수치해석법을 이용한 전기집진기의 집진효율 예측에 관한 연구)

  • Park, Jeong-Ho;Chun, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.618-623
    • /
    • 2001
  • The transport of charged particles in electrostatic precipitator is investigated by Eulerian numerical analysis. Collection efficiencies are calculated using various combinations of the assumptions about flow field, turbulent diffusivity and boundary condition at collecting electrode. The characteristics of calculated collection efficiencies are compared with the trends of published experimental results. It is found that the collection efficiency for the case using nonuniform turbulent flow field, nonuniform turbulent diffusivity and zero concentration boundary condition at collecting electrode is the most suitable for the prediction of collection efficiency of electrostatic precipitator.

  • PDF

Adsorption Characteristics of BTEX on Dust Collecting Electrode Coated with Activated Carbon (활성탄으로 코팅된 집진전극의 BTEX 흡착특성)

  • Nam, Sangchul;Kim, Hyun Jung;Kim, Kwang Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.773-779
    • /
    • 2013
  • This study was performed to provide the basic data for the function of BTEX removal for compact electrostatic precipitator which are applicable to indoor environment (or closed spaces). For this purpose, the adsorption equilibrium test was conducted for BTEX of activated carbon sheet (ACS) and activated carbon (AC), and the adsorption characteristics of AC and ACS were evaluated using the Langmuir constant which was obtained from the adsorption characteristics, adsorption capacity and regression calculation. The surface area and adsorption pore volume of ACS reduced by 70% and 86%, respectively, as compared to those of AC, and the adsorption capacities of BTEX also showed a similar level. Thus, it is considered that ACS applied electrostatic precipitator is able to remove dust and BTEX simultaneously.

A Study on the Collection Characteristics of a Moving Electrode Electrostatic Precipitator - I. Effect of Collection Plate Velocity - (이동 전극형 전기집진기의 집진특성에 관한 연구 - I. 집진판 이동 속도의 영향-)

  • Kim Yong-Jin;Ha Byung-Kil;Jeong Sang-Hyun;Moon Sang-Cheol;Yoo Joo-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.901-907
    • /
    • 2004
  • This study investigate the effect of collection plate velocity on the electrical and collection characteristics of a moving electrode electrostatic precipitator (MEEP). Though a high resistivity fly ash is attached at the collecting electrode, the MEEP has very stable characteristics of voltage and corona current. Collection efficiency, corona current, and overall collection efficiency are increased, as the magnitude of the collection plate velocity increases.

Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources (조직 표면에서의 베타선 흡수선량 측정)

  • Hah, Suck-Ho;Kim, Jeong-Mook;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 1991
  • Beta ray $(^{90}Sr+^{90}Y)$ absorbed dose at tissue surface was measured from the distance of 30cm by use of extrapolation chamber. In the measurement, following factors were considered: effective area of collecting electrode, polarity effect, ion recombination and window attenuation. The measured absorbed dose rate at tissue surface was $1.493{\mu}Gy/sec$ with ${\pm}2.9%$.

  • PDF

Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst (촉매 활성층 두께 제어를 통한 연료전지 성능 해석)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

Analyzing the Effect of Si Surface Morphology on Front Electrode Formation (전면 전극 형성 시 표면 형상이 미치는 영향 분석)

  • Han, Hyebin;Choi, Dongjin;Kang, Dongkyun;Park, HyunJung;Bae, Suhyun;Kang, Yoonmook;Lee, Hae-Seok
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.130-133
    • /
    • 2019
  • The Ag crystallite formed during the formation of the front electrode forms a contact between the metal of the electrode and the emitter of the cell. Contact between the electrode and emitter plays an important role in collecting electrons generated by the solar cell. Therefore, Ag crystallite formation is an important factor. In order for solar cells to have good characteristics, it is important to understand the factors influencing the Ag crystallite formation. Factors affecting the formation of Ag crystallites include Si emitter, morphology, Si defect and firing temperature. The influence of surface morphology on Ag crystallite formation was confirmed throughout this study. In the case of fine texturing, the Ag crystallites were formed at the pointed parts. The finer the texturing, the sharper areas and more Ag crystallites were formed. This was confirmed by SEM image and FF calculation.