• Title/Summary/Keyword: Collapse time

Search Result 577, Processing Time 0.032 seconds

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C.;Zhang, Xiaoxin;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2008
  • In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

Probabilistic Precontract Pricing for Power System Security (전력계통 안정성확보를 위한 확률적 예약요금제)

  • 임성황;최준영;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 1994
  • Security of a power system refers to its robustness relative to a set of imminent disturbances (contingencies) during operation. The socially optimal solution for the actuall level of generation/consumption has been well-known spot pricing at shot-run marginal cost. The main disadvantage of this approach arises because serious contingencies occur quite infrequently. Thus by establishing contractual obligations for contingency offering before an actual operation time through decision feedback we can obtain socially optimal level of system security. Under probabilistic precontract pricing the operating point is established at equal incremental cost of the expected short-run and collapse cost of each participant. Rates for power generation/consumption and for an offer to use during a contingency, as well as information on the probability distribution of contingency need for each participant, are derived so that individual optimization will lead to the socially optimal solution in which system security is optimized and the aggregate benefit is maxmized.

  • PDF

Automatic cardiac output control algorithm for total artificial heart by current waveform analysis (전류파형분석에 의한 완전이식 인공심장의 심박출량 자동제어 알고리즘)

  • 최원우;김희찬;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.383-391
    • /
    • 1993
  • In this paper, a new automatic cardiac output control algorithm without any pressure sensors for the motor-driven electromechanical total artificial heart(TAH) was developed using motor current information. In the previous studies, many transducers were utilized to obtain informations of hemodynamic states for the automatic cardiac output control. But. such automatic control with sensors has some problems. To solve these problems, I proposed a new "sensorless" automatic cardiac output control algorithm providing the adequate cardiac output to the time-varying physiological demand without right atrial collapse. In-vitro tests were performed to evaluate the performance of a new algorithm and it satisfied the basic three requirements on the pump output response through the mock circulation tests.

  • PDF

STUDY ON GRAVOTHERMAL OSCILLATIONS WITH TWO-COMPONENT FOKKER-PLANCK MODELS

  • KIM SUNGSOO S.;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.143-144
    • /
    • 1996
  • Two-component models (normal star and degenerate star components) are the simplest realization of clusters with a mass spectrum because the high mass stars quickly evolve off leaving degenerate stars behind, while low mass stars survive for a long time as main-sequence stars. In the present study we examine the post-collapse evolution of globular clusters using two-component Fokker-Planck models that include three-body binary heating. We confirm that a simple parameter ${\epsilon}{\equiv} (E_{tot}/t_{rh})/(E_c/t_{rc})$ well describes the occurrence of gravothermal oscillations of two-component clusters. Also, we find that the degree of instability depends on the steepness of the mass function such that clusters with a steeper mass function are less exposed to instability.

  • PDF

Finite Element Analysis of Transient Viscous Flow with Free Surface using Filling Pattern Technique (형상 충전 기법을 이용한 자유표면의 비정상 점성 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Jeong, Jun-Ho;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.551-556
    • /
    • 2001
  • The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

  • PDF

A Study on the Selection of Cutting Conditions in High Speed Pipe Cutting Machine (고속 파이프 절단기의 절단 조건 선정에 관한 연구)

  • Ahn, Sung-Hwan;Shin, Sang-Hun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.144-149
    • /
    • 2008
  • This study presents the selection of cutting conditions in high speed pipe cutting machine for the better quality. A high speed pipe cutting machine which uses a rotary knife can make good quality products in short time. But, the machine is much sensitive by cutting conditions because of the complicated mechanism. In this reason, many experiments for cutting condition selection are necessary to improve quality of production. This study carried out cutting experiments with the three factors that are cutting RPM, cutting force and pooling force. 2-dimensional profile measuring instrument is used to measure which is represented by ${\Delta}h$, a sum of burr and collapse height. The effects of factors are analyzed by using MINITAB, the commercial software.

Influence of undercut and surface crack on the stability of a vertical escarpment

  • Banerjee, Sounik K.;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.965-981
    • /
    • 2017
  • Stability of vertical escarpments has been the subject of discussion for long time. However, available literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-dimensional stability factor (${\gamma}H/c$) is used to inspect the degrading effect of undercut and cracks developed at different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to understand the extent and the type of failure zone which may generate during the state of collapse.

Development of an Automatic Cardiac Output Control Algorithm for the Total Artificial Heart (완전 이식형 인공심장의 심박출량 자동 제어 알고리즘 개발에 관한 연구)

  • 최원우;김희찬;민병구
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.38-47
    • /
    • 1995
  • A new automatic cardiac output control algorithm for the motor-driven electromechanical total artificial heart(TAH) was developed based on the motor current waveform analysis without using any extra transducer. The basic control requirements of artificial heart can be described in terms of three features : preload sensitivity, afterload insensitivity, and balanced ventricular outputs. In the previous studies, many transducers were utilized to obtain informations of hemodynamic states for the automatic cardiac output control, But such automatic control systems with sensors have had reliability problems. We proposed a new sensorless automatic cardiac output control algorithm providing adequate cardiac output to the time-varying physiological demand without causing right atrial collapse, which is one of the critical problem in an active-filling type device. In-vitro tests were performed on a mock circulation system to evaluate the performance of the developed algorithm and the results show that the new algorithm satisfied the basic control requirements on the cardiac output response and the possibility of application of the developed algorithm to in vivo experiments.

  • PDF

Development of Self-Diagnosis Concrete for Damage (자기손상을 스스로 나타내는 콘크리트 개발)

  • 윤요현;김이성;김화중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • The purpose Performance degradation of concrete structures is generally caused by the deteriorations, such as surface collapse, pop-out, crack, and so on. It may result in serious defects of the concrete structures. Thus it is very important to detect and repair the defects of concrete structures within a proper time to assure the structural safety. However, the defects due to the deteriorations are usually difficult to find by visual inspection. A sensor is developed in this study, which may give early indications for degradation of concrete structures and show the locations of the demage. Cracks can be defected by the liquid in a small glass capsules which are embedded in the concrete structures. This paper discusses the applicability of that was developed smart concrete.

  • PDF

Introduction of the Intelligent Health Surveillance System for Urban Transit Station (도시철도 정거장의 종합 건전성 감시시스템 개발방향)

  • Shin, Jeong-Ryol;Ahn, Tae-Ki;Park, Kee-Jun;Kim, Jin-Ho;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1248-1253
    • /
    • 2007
  • Urban transit or subway stations generally service for a long period of several decades. And, the urban transit or subway is public transportation which lots of people takes every day. During the service time, they are inevitably damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. The included damage accumulates and performance degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they result in collapse with the structural failure under extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the intelligent health surveillance system should be researched and developed for ensuring the safety of station. In this paper, the research plans of the intelligent health surveillance system of urban transit station are presented. And also, the development or establishment directions of this system are suggested.

  • PDF