• Title/Summary/Keyword: Collapse time

Search Result 583, Processing Time 0.026 seconds

Accelerated Creep Testing of Geogrids for Slopes and Embankments: Statistical Models and Data Analysis

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.227-232
    • /
    • 2004
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the accelerated creep tests were applied to two different types of polyester geogrids, at 75, 80, 85$^{\circ}C$ by applying 50% load of ultimate tensile strengths using a newly designed test equipment which is allowed the creep testing at higher temperatures. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results indicate that the conventional procedures with the newly designed test equipment are shown to be effective in prediction of the lifetimes of geogrids with shorter test times. In addition, the predicted lifetimes of geogrids having different structures at various creep strains give guidelines for users to select the proper geogrids in the fields.

  • PDF

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

A Study on Voltage Stability Improvement by the Efficient Network Reconfiguration Algorithm

  • Kim, Byung-Seop;Shin, Joong-Rin;Park, Jong-Bae;Shin, Yong-Hak
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.58-68
    • /
    • 2004
  • This paper presents an optimal routing algorithm (ORA) for maximizing voltage stability as well as for minimizing power loss in radial power systems. In the proposed ORA, a novel voltage stability index (VSI) for real-time assessment is newly introduced based on the conventional critical transmission path framework. In addition, the suggested algorithm can automatically detect the critical transmission paths resulting in voltage collapse when additional real or reactive loads are added. To implement an effective ORA, we have developed an improved branch exchange (IBE) method based on a loss calculation index and tie-branch power flow equations, which are suggested for real-time applications. The proposed algorithm has been tested with IEEE test systems as well as a large-scale power system in Korea to demonstrate its effectiveness and efficiency.

A Study on the Optimal Routing Planning Algorithm for Rescue of Multiple Victims in Disaster Area (재난 지역 다수 조난자 구조를 위한 최적 경로 계획 알고리즘 연구)

  • Kim, Ki-Tae;Cho, Sung-Jin;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The large-scale disasters occur to unexpected accidents such as natural disasters(earthquake, typhoon, tsunami, etc.), and human-caused accidents(fire, collapse, terror etc.). Rescue teams perform rescue activities to save many lives in large-scale disaster area. The main purpose of this study is to compose a optimal routing planning for rescue of multiple victims in disaster area. A realistic routing planning with rescue limit time which considers rehabilitation and reconstruction will be suggested in this study. A mathematical programming model and a hybrid genetic algorithm will be suggested to minimize the total spending time. By comparing the result, the suggested algorithm gives a better solution than existing algorithms.

Connection method on pre-installed bridge monitoring system for bridge structure safety network (교량시설물 안전관리 네트워크 구축을 위한 기존 시스템 연계방안 연구)

  • Park, Ki-Tae;Lee, Woo-Sang;Joo, Bong-Chul;Hwang, Yoon-Koog
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.469-472
    • /
    • 2008
  • In general, structures in service gradually lose original performance according to time due to initial defects in design and construction, or exposure to unfavorable external conditions such as repeated loading or deteriorating environment, and in extreme cases, may collapse in large disaster. Therefore, in order to maintain the serviceability of structures at optimal level, advanced structure measuring system which can inform optimal time point and method of maintenance is required in addition to accurate prediction of residual life the structure by periodic inspection. To guarantee the safety level of bridge structure and to prevent from disaster, the integration of safety network for bridge structures are needed. Therefore in this study, to enhance the effectiveness of safety network for bridge, the connection methodologies between safety network and pre-installed bridge monitoring system are investigated.

  • PDF

A Study on Control of Mobile Cranes (이동 CRANE의 제어에 관한 연구)

  • Kim, Sang-Bong;Shin, Min-Saeng;Kim, Hwan-Seong;Jeong, Yong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.47-56
    • /
    • 1991
  • The specifications needed for the mobile cranes are summarized as the following : 1) there may be not occured the oscillation of the cargo at unloading point. 2)the required time from departure point to destination point may be as short as possible. 3) there may be not a collapse of cargo caused by the oscillation in the course that the crago is mobilling. In this paper, the linear fractional transformation method is adopted as a method in order to improve the above mentioned problems. A design method of servo system is developed by modifying Davison's method for the case that the homogeneous differential equations of reference input and disturbance are different types. The real time control of a mobile crane system is implemented by 16bits microcomputer with A/D and D/A converters to illustrate the application of the adopted method. The experimental results for the three types of the design methods; linear fractional transformation method, servo system design method and optimal control method are shown for the comparison.

  • PDF

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

Detection of a Microsporidium, Nosema ceranae, from Field Population of the Bumblebee, Bombus terrestris, via Quantitative Real-Time PCR (서양뒤영벌 야외개체군에서 Real-Time PCR을 이용한 Nosema ceranae의 검출)

  • Lee, Dae-Weon
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2013
  • The bumblebee, Bombus terrestris, has played an important role as one of the alternative pollinators since the outbreak of honeybee collapse disorder. Recently, pathogens and parasites such as viruses, bacteria and mites, which affect the life span and fecundity of their host, have been discovered in B. terristris. In order to detect the microsporidian pathogen, Nosema spp. in the field populations of B. terristris, we collected adults and isolated their genomic DNA for diagnostic PCR. The PCR primers specific for Nosema spp. were newly designed and applied to gene amplification for cloning. Only small subunit ribosomal RNA (SSU rRNA) gene of N. ceranae was successfully amplified among examined genes and sequenced, which indicates that N. ceranae mainly infects the examined field population of B. terristris. To detect of SSU rRNA gene, two regions of SSU rRNA gene were selected by primary PCR analysis and further analyzed in quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis demonstrated that SSU rRNA of N. ceranae was detected at concentration as low as $0.85ng/{\mu}l$ genomic DNA. This result suggests that the detection via qRT-PCR can be applied for the rapid and sensitive diagnosis of N. ceranae infection in the field population as well as risk assessment of B. terristris.

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS

  • KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.405-412
    • /
    • 2004
  • Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc $\ge$ 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to ${\~}50\%$ in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks ($M_s {\le} 5$), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Hemodynamic and Electrocardiographic Changes in the Brain Death Model Caused by Sudden Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제1보;급격한 뇌압의 상승에 의한 뇌사모델에서의 혈역학적 및 심전도학적 변화-)

  • 조명찬
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • We developed an experimental model of brain death using dogs. Brain death was caused by increasing the intracranial pressure[ICP suddenly by injecting saline to an epidural Foley catheter in five female mongrel dogs[weight, 20-25Kg .Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death. 1. Abrupt rise of ICP after each injection of saline followed by a rapid decline to a new steady-state level within 15 minutes and the average volume required to induce brain death was 7.6$\pm$0.8ml.2. Body temperature, heart rate, mean pulmonary arterial pressure, left ventricular[LV enddiastolic pressure and cardiac output was not changed significantly during the process of brain death, but there was an increasing tendency.3. Mean arterial pressure and LV maximum +dP/dt increased significantly at the time of brain death.4. Hemodynamic collapse was developed within 140 minutes after brain death.5. Marked sinus bradycardia followed by junctional rhythm was seen in two dogs and frequent VPB`s with ventricular tachycardia was observed in one dog at the time of brain death. Hyperdynamic state develops and arrhythmia appears frequently at the time of brain death. Studies on the effects of brain death on myocardium and its pathophysiologic mechanism should be followed in the near future.

  • PDF