Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.5.405

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS  

KANG HYESUNG (Department of Earth Sciences, Pusan National University)
JONES T. W. (Department of Astronomy, University of Minnesota)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.5, 2004 , pp. 405-412 More about this Journal
Abstract
Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc $\ge$ 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to ${\~}50\%$ in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks ($M_s {\le} 5$), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.
Keywords
acceleration of particles; cosmology; cosmic rays; hydrodynamics; methods:numerical;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kang, H., Jones, T. W., & Gieseler, U. D. J, 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI   ScienceOn
2 Kang, H., Jones, T. W., LeVeque, R. J., & Shyue, K. M. 2001, Time Evolution of Cosmic-Ray Modified Plane Shocks, ApJ, 550, 737   DOI   ScienceOn
3 Feretti L., Fusco-Femiano R., Giovannini G., Govoni F., 2001, The giant radio halo in Abell 2163, A&Ap 373, 106   DOI   ScienceOn
4 Fusco-Femiano, R., Dal Fiume, D., Feretti, L., Giovannini, G., Grandi, P., Matt, G., Molendi, S. & Santangelo, A. 1999, Hard X-Ray Radiation in the Coma Cluster Spectrum, ApJ, 513, L21   DOI   ScienceOn
5 Kang, H., & Jones, T. W., 2002, Acceleration of Cosmic Rays at Large Scale Cosmic Shocks in the Universe, Journal of Korean Astronomical Society, 35, 159   DOI   ScienceOn
6 Bowyer, S., Bergh$\ddot{o}$fer, T. W., & Korpelra, E., 1999, Extreme-Ultraviolet Emission in Abell 1795, Abell 2199, and the Coma Cluster, ApJ, 526, 592   DOI   ScienceOn
7 Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the Large Scale Structure of the Universe, ApJ, 593, 599   DOI   ScienceOn
8 Sarazin, C. L., & Lieu, R., 1998, Extreme-Ultraviolet Emission from Clusters of Galaxies: Inverse Compton Radiation from a Relic Population of Cosmic Ray Electrons?, ApJ, 494, L177   DOI   ScienceOn
9 Malkov M. A., & Drury, L. O'C. 2001, Nonlinear theory of diffusive acceleration of particles by shock waves, Rep. Prog. Physr. 64, 429   DOI   ScienceOn
10 Kang, H., & Jones, T. W. 1991, Numerical studies of diffusive particle acceleration in supernova remnants, MNRAS, 249, 439   DOI
11 Lucek, S. G., & Bell, A. R. 2000, Non-linear amplification of a magnetic field driven by cosmic ray streaming, MNRAS, 314, 65   DOI   ScienceOn
12 Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1   DOI   ScienceOn
13 Drury, L. O'C. 1983, An Introduction to the Theory of Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973   DOI   ScienceOn
14 Bell, A. R. 1978, The acceleration of cosmic rays in shock fronts. I, MNRAS, 182, 147   DOI
15 Skilling, J. 1975, Cosmic ray streaming. I - Effect of Alfven waves on particles, MNRAS, 172, 557   DOI
16 Malkov, M. A., & V$\ddot{o}$lk H.J. 1998, Diffusive ion acceleration at shocks: the problem of injection, Adv. Space Res. 21, 551   DOI   ScienceOn
17 Miniati, F., Ryu, D., Kang, H., Jones, T. W., Cen, R., & Ostriker, J. 2000, Properties of Cosmic Shock Waves in Large-Scale Structure Formation, ApJ, 542, 608   DOI   ScienceOn
18 Miniati, F., 2002 Inter-galactic Shock Acceleration and the Cosmic Gamma-ray Background, MNRAS, 337, 199   DOI   ScienceOn
19 Quest, K. B. 1988, Theory and simulation of collisionless parallel shocks, J. Geophys. Res. 93, 9649   DOI
20 Loeb, A. & Waxmann, E. 2000, Cosmic-ray background from structure formation in the intergalactic medium, Nature, 405, 156   DOI   ScienceOn
21 Kang, H., 2003, Acceleration of Cosmic Rays at Cosmic Shocks, Journal of Korean Astronomical Society, 36, 1
22 Gieseler U. D. J., Jones T. W., & Kang H. 2000, Time dependent cosmic-ray shock acceleration with self-consistent injection, A&Ap, 364, 911
23 Giovannini, G. & Feretti, L. 2000, Halo and relic sources in clusters of galaxies, New Astronomy, 5, 335   DOI   ScienceOn
24 Jones, T. W. & Kang, H. 2005, Simulating Particle Acceleration in Modified Shocks Using a New Coarse-grained Finite Momentum-Volume Scheme, in preparation
25 Berezhko E. G., & V$\ddot{o}$lk H. J. 2000, Kinetic theory of cosmic ray and gamma-ray production in supernova remnants expanding into wind bubbles, A&Ap, 357, 283
26 Berezhko, E., Ksenofontov, L., & Yelshin, V. 1995, Efficiency of CR acceleration in supernova remnants, Nuclear Physic B., 39, 171