• 제목/요약/키워드: Collapse behavior analysis

검색결과 276건 처리시간 0.019초

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

공내재하시험에 의한 화강 풍화암의 지반 특성 평가 (Evaluation on Ground Characteristics of Weathered Granite Masses by Pressuremeter Test)

  • 이광희;배경태;장서만;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.831-838
    • /
    • 2004
  • To study on mechanical characteristics of weathered granite masses are difficult because of undisturbanced sampling and in-situ test. Generally, pressuremeter test is widely used to investigate the behavior of weathered rock masses. However, it has many problems to get a limit pressure because of cavity collapse, membrane damage, ete. This study aims to evaluate the mechanical characteristics of weathered granite masses using in-situ pressuremeter test and numerical analysis depending on the ratio of length and diameter of the membrane(L/D=5, 8, 10, 15, 20). Test results and data are shown that strength parameters are reduced exponentially varing weathering degree, and numerical analysis results are approximately coincided with the test results. And the ratio of length and diameter of the membrane arc not affected the parameters such as modulus of pressuremeter, shear modulus, etc. But limit pressure is increased decreasing membrane length based on numerical analysis. On the other hand, increasing the membrane length, yield pressure is decreased and plastic radius is increased in the case of same weathering degree.

  • PDF

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

판폭두께비가 큰 변단면 휨부재의 구조성능에 관한 실험적 연구 (Experimental Study on Structural Behavior of Tapered Member with Non-compact Flange and Web)

  • 정경수;전배호;박만우;도병호
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.357-365
    • /
    • 2011
  • 저층 장스팬 철골프레임에는 강재절감을 위해 휨모멘트 저항을 극대화 한 판폭두께비가 큰 변단면 부재를 이용한 PEB시스템을 사용하고 있다. 과다한 외력에 의해 PEB시스템의 붕괴에 대한 안정성을 파악하기 위해서는 변단면 부재의 좌굴거동에 관한 실험 및 해석적 예측은 중요하다. 이에 본 연구에서는 변단면의 판폭(춤)두께비(d/t)와 변단면비를 주요 변수로 한 변단면 부재에 대한 실대형 실험을 행하였다. 현행 설계기준, 수정된 Yoda 모델을 이용한 소성힌지해석 및 유한요소해석으로 예측한 초기강성, 내력 및 모멘트-회전각관계에 대해서 실험결과와 비교하였다.

리브로 보강한 전단 항복형 강판벽의 거동 (Behavior of Shear Yielding Thin Steel Plate Wall with Tib)

  • 윤명호;위지은;이명호;오상훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.503-511
    • /
    • 2001
  • 건물의 내진성을 향상시키는 방법으로 전단벽과 가새 등의 내진요소가 사용된다. 대부분 철근콘크리트 건물에서는 철근콘크리트 전단벽이 철골건물에서는 철골가새가 내진요소로 사용이 되고 있다. 그러나 철근콘크리트 전단벽은 시공이 어렵고 원하는 소성 영역에서 연성(ductility)과 에너지 흡수능력을 만족시키기 어렵다. 강도와 강성이 매우 높고 연성이 우수하며, 자중이 작아서 전단벽의 재료로서 적합하다고 판단된다. 안정적인 거동을 하도록 박강판의 양면에 리브판을 보강하는 방법을 채택하였다. 실험은 강판벽의 폭높이비(D/H) 리브보강형태, 재하이력 등을 변수로 하여 수행하였다. 실험결과로 부터 강판벽의 제반 복원력특성을 분석 고찰하였다.

  • PDF

무량복합 및 벽식 구조시스템의 내진성능평가 (Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures)

  • 강현구;이민희;김진구
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.259-266
    • /
    • 2012
  • 본 논문에서는 벽식 구조시스템의 일부 전단벽을 제거하여 공간의 가변성을 높인 무량복합 구조시스템의 내진성능을 ATC-63에 제시되어 있는 절차에 따라 파악하였으며, 동일한 규모의 벽식 구조시스템의 내진성능과 비교하였다. 해석모델로 12층 무량복합 및 벽식 구조시스템을 KBC 2009에 따라 설계하고 비선형 정적 및 비선형 증분 동적해석(IDA)을 수행하여 지진응답 및 붕괴거동을 파악하였다. 무량복합 시스템은 벽식 구조시스템 보다 적은 양의 콘크리트 물량으로 설계되었으며, 동일한 지진하중에 대하여 좀 더 큰 변위응답을 보이는 것으로 나타났다. IDA 해석결과 얻어진 붕괴 여유비(CMR)는 ATC-63에 제시된 한계상태를 만족하여 설계지진하중에 대하여 충분한 내진성능을 보유한 것으로 나타났다.

선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석 (Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings)

  • 박거락;송규;최영재;조락균;김충수
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

Proposing a multi-mushroom structural system for enhanced seismic performance in large-plan low-rise reinforced concrete buildings

  • Mahmoud Alhashash;Ahed Habib;Mahmood Hosseini
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.487-502
    • /
    • 2024
  • This study introduces a novel 'multi-mushroom' structural system designed to improve seismic performance in lowrise buildings. Traditional low-rise structures tend to favor sliding over rocking due to their smaller aspect ratios despite the rocking system's superior seismic response reduction. Rocking designs allow structures to pivot at their base during seismic events, reducing damage by dissipating energy. The proposed multi-mushroom system divides the building into four equal sections with small gaps in between, each capable of independent rocking. Numerical analyses are conducted using scaled earthquake records from far- and near-source events to evaluate this system's performance. The results indicated that the multimushroom system significantly reduces plastic hinge formation compared to conventional designs. The system also demonstrated enhanced beam performance and a robust base girder, contributing to reduced collapse vulnerability. The 3-story model exhibited the most favorable behavior, effectively mitigating peak roof drift values, where the rocking system achieved a 21% reduction in mean roof displacement for near-field records and 15% for far-field records. However, the 5-story configuration showed increased roof displacement, and the 7-story model recorded higher incidences of collapse prevention (CP) hinges, indicating areas for further optimization. Overall, the multi-mushroom system enhances seismic resilience by minimizing plastic hinge formation and improving structural integrity. While the system shows significant promise for low-rise buildings, challenges related to roof displacement and inter-story drift ratio in taller structures necessitate further research. These findings suggest that the multi-mushroom system offers a viable solution for seismic risk reduction, contributing to safer and more sustainable urban development in earthquake-prone areas.