• 제목/요약/키워드: Collapse Load

검색결과 573건 처리시간 0.025초

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

집중하중하의 균열을 갖는 부정정보의 소성붕괴거동 (Plastic collapse behaviour of statically indeterminate beams with a crack under concentrated load)

  • 남기우
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.67-74
    • /
    • 1996
  • The paper focuse on the effect of a crack subjects to collaspe behabiors of statically indeterminate beams under concentrated load. Through the experiment and calculation, it was revealed that the collaspe load of statically indeterminate beams is much higher than that of statically determinate beams. The cumulative AE event counts of statically determinate beams was less than that of statically indeterminate beams, and the center notch beams sas revealed less than that of the side notch beams.

  • PDF

성형효과를 고려한 박판 부재의 유한요소 극한해석을 이용한 붕괴거동해석 (Collapse Simulation with a Finite Element Limit Analysis for Thin-walled Structures Considering Forming Effects)

  • 김기풍;허훈
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.182-189
    • /
    • 2002
  • This paper is concerned with a collapse behavior analysis for a thin-walled structure considering farming effects. Numerical simulation is carried out with a finite element limit analysis in order to identify forming effects on collapse behavior of a thin-walled structure such as an S-rail. The formed S-rail contains fabrication histories such as residual stress, work hardening, non-uniform thickness distribution and geometric changes resulted from the forming process. The collapse behavior analysis of an S-rail with forming effects leads to different results from that without such effects. The present study deals with the collapse analysis of the S-rail fabricated with the typical forming, trimming and springback processes. Collapse properties such as the collapse load, the collapse mode and the energy absorption are calculated and investigated In order to identify forming effects. It is fully demonstrated that the design of thin-walled structures needs to consider the forming effects for a proper assessment of the load-carrying capacity and the deformation of the formed structures.

전압다적해의 특성 및 유도전동기부하를 갖는 계통에 있어서의 전압안정 (Properties of Multiple Load Flow Solutions and Prevention of Voltage Collapse in System with Induction Motor Load)

  • Park, Jong-Keun
    • 대한전기학회논문지
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 1985
  • As is well known, the power equations of the N-node system have 2N-1 voltage solutions at most. The vlotage solutions are characterized by the introduction of the mode concept in this paper. There are two mode voltages at one node. One is defined as the (+) mode voltage and the other is defined as the (-) mode one. In this paper, we show that the (-) mode voltage responds to the increase of the power condenser almost adversly to the response of the (+) one. We study how to prevent the voltage collapse in the system with the induction motor load. The critical values of the gain and the time constant in case of the continuous power condenser control, and of the unit power condenser and the closing time delay in case of the discontinuous control for the prevention of the voltage collapse, are calculated. The effect of the composition ratio of the impedance load to the induction moter load on the above critical values are also investigated.

  • PDF

소성 붕괴하중 및 변형거동 해석(1) (Simulation of Plastic Collapsing Load and Deformation Behaviours(I))

  • 김영석
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

A Method to Control Unstable Hopf Bifurcation in Power Systems

  • Lee, Sang-Ho;Park, Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The model of a power system with load dynamics is studied by investigating qualitative changes in its behavior as the reactive power demand at a load bus is increased. The load is created using induction motors parallel with the constant power and constant impedance load. As the load increases, the system experiences various bifurcations such as sub critical and supercritical Hopf, period-doubling and saddle-node bifurcation. The latter may lead the system to voltage collapse. A nonlinear controller is used to control the subcritical Hopf bifurcation and hence mitigate voltage collapse. It is applied to the KEPCO (Korean Electric Power Company) system to demonstrate its validity.

최적화 조류계산법을 이용한 전압안정도 해석 (Voltage Stability Analysis Using Optimal Load Flow Method)

  • 전동훈;추진부;김건중;이병일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권7호
    • /
    • pp.340-347
    • /
    • 2001
  • In this Paper, we proposed a new voltage stability analysis algorithm. Using $ $ calculated by the optimal load How method(OLF), it rapidly and correctly calculates a PV curve with voltage collapse point in the stable region. OLF can calculates voltage collapse point as well as the operating point in the stable region. Specially, $ $ indicates the relative distance between voltage collapse point and the solution in the unstable region. In the study of a sample system, we verified the superiority of proposed algorithm.

  • PDF

다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산 (On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions)

  • 남해곤;김동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF