• Title/Summary/Keyword: Collapse Forecasting

Search Result 13, Processing Time 0.023 seconds

Prediction Method for Ground Collapse Using Numerical Simulations (수치해석을 이용한 도로함몰 예측기법)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.5-11
    • /
    • 2019
  • Recently, ground collapse in urban area has been widely paid attention as it frequently happens. To investigate the causes and suggest the measurements, many researches such as ground exploration from GPR, mock test and numerical simulations have been conducted. The proposed risk evaluation chart recently focuses only on the current ground status and is not capable of forecasting the ground collapse. This paper presents the prediction method of ground collapse using the numerical simulations of 30 cases considering void size and ground height as variables. It finally provides the charts that can analyze quantitatively the ground collapse.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Development and Application of Risk Recovery Index using Machine Learning Algorithms (기계학습알고리즘을 이용한 위험회복지수의 개발과 활용)

  • Kim, Sun Woong
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • Asset prices decline sharply and stock markets collapse when financial crisis happens. Recently we have encountered more frequent financial crises than ever. 1998 currency crisis and 2008 global financial crisis triggered academic researches on early warning systems that aim to detect the symptom of financial crisis in advance. This study proposes a risk recovery index for detection of good opportunities from financial market instability. We use SVM classifier algorithms to separate recovery period from unstable financial market data. Input variables are KOSPI index and V-KOSPI200 index. Our SVM algorithms show highly accurate forecasting results on testing data as well as training data. Risk recovery index is derived from our SVM-trained outputs. We develop a trading system that utilizes the suggested risk recovery index. The trading result records very high profit, that is, its annual return runs to 121%.

Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency (안전성 및 효율성 관점에서의 다목적 실선 실험)

  • Sang-Won Lee;Kenji Sasa;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.116-118
    • /
    • 2023
  • In recent years, the need for economical and sustainable ship routing has emerged due to the enforced regulations on environmental issues. Despite the development of weather forecasting technology, maritime accidents by rough waves have continued to occur due to incorrect weather forecasts. In this study, onboard measurements are conducted to observe the acutal situation on merchant ships in operation encountering rough waves. The types of measured data include information related to navigation (Ship's position, speed, bearing, rudder angle) and engine (engine revolutions, power, shaft thrust, fuel consumption), weather conditions (wind, waves), and ship motions (roll, pitch, and yaw). These ship experiments was conducted to 28,000 DWT bulk carrier, 63,000 DWT bulk carrier, 20,000 TEU container ship, and 12,000 TEU container ship. The actual ship experiment of each ship is intended to acquire various types of data and utilize them for multi-objective studies related to ship operation. Additionally, in order to confirm the sea conditions, the directional wave spectrum was reproduced using a wave simulation model. Through data collection from ship experiments and wave simulations, various studies could be proceeding such as the measurement for accurate wave information by marine radar and analysis for cargo collapse accidents. In addition, it is expected to be utilized in various themes from the perspective of safety and efficiency in ship operation.

  • PDF

A Study on The Scale Effect of Landslide Model Tests (산사태 모형실험에서의 Scale Effect에 관한 연구)

  • Jeong, Jisu;Ji, Younghwan;Kim, Yootae;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.5-12
    • /
    • 2011
  • This study was performed to analyze the degree of rainfalls, the duration time of rainfalls, the inclination of slopes and other damage causes depending on the ground condition, when the landslide occurs by the rainfall. Based on that, a big and a small model soil box were compared to examine the features of landslides, which is ultimately for forecasting landslides. An artificial rainfall device was installed in the model box, and the large model box has a real-size slope in it. Also, various measures were fulfilled such as collapse forms, a pore pressure, an earth pressure and moisture contents in order to analyze the effect of the model box size on the landslide mechanism and to test the usability of a small model box as a material for landslide experiments.

Forecasting COVID-19 Transmission and Healthcare Capacity in Bali, Indonesia

  • Wirawan, I Md Ady;Januraga, Pande Putu
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.3
    • /
    • pp.158-163
    • /
    • 2020
  • Objectives: In the current early phase of the coronavirus disease 2019 (COVID-19) outbreak, Bali needs to prepare to face the escalation of cases, with a particular focus on the readiness of healthcare services. We simulated the future trajectory of the epidemic under current conditions, projected the impact of policy interventions, and analyzed the implications for healthcare capacity. Methods: Our study was based on the first month of publicly accessible data on new confirmed daily cases. A susceptible, exposed, infected, recovered (SEIR) model for COVID-19 was employed to compare the current dynamics of the disease with those predicted under various scenarios. Results: The fitted model for the cumulative number of confirmed cases in Bali indicated an effective reproduction number of 1.4. Interventions have decreased the possible maximum number of cases from 71 125 on day 86 to 22 340 on day 119, and have prolonged the doubling time from about 9 days to 21 days. This corresponds to an approximately 30% reduction in transmissions from cases of mild infections. There will be 2780 available hospital beds, and at the peak (on day 132), the number of severe cases is estimated to be roughly 6105. Of these cases, 1831 will need intensive care unit (ICU) beds, whereas the number of currently available ICU beds is roughly 446. Conclusions: The healthcare system in Bali is in danger of collapse; thus, serious efforts are needed to improve COVID-19 interventions and to prepare the healthcare system in Bali to the greatest extent possible.

Blast behaviour prediction and simulation methods: A state-of-the-art review

  • Tarek Sharaf;Sara Ismail;Mohamed Elghandour;Ahmed Turk
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.207-226
    • /
    • 2024
  • Recently, the phenomenon of disproportionate structural failure caused by blast load has grown more common in the field of engineering design. Blast-resistant analyses and designs have been developed by many structural techniques and methodologies to forecast the loads produced by a high explosive charge on structures with complicated geometry. These techniques are based on a good understanding of blast phenomena to analyze structures exposed to blast load. This paper provides a current state-of-the-art review of blast prediction and simulation methods to predict the design blast loads that are used to assess the structural response and damage level to an existing or new building. The damage criteria from the general design approach relevant to civil design applications in forecasting blast loads as well as structural system responses will be provided. Identifying the structures' expected damage class would aid in providing extra reinforcing or strengthening for damaged elements to meet the acceptance criteria or minimize damage by a suitable blast mitigation strategy. Based on identifying the damage class expected of a structure subjected to an explosion, blast mitigation strategies could be used to minimize damage and maximize the ability of the structure to function even after the explosion.

Risk-based Profit Prediction Model for International Construction Projects (해외건설공사의 리스크 분석에 기초한 수익성 예측모델에 관한 연구)

  • Han, Seung-Heon;Kim, Du-Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.635-647
    • /
    • 2006
  • Korean construction companies first advanced to the international markets in 1960's and so far have brought more than 4,900 projects which account for 193 billion dollars approximately. With the large increase of national employment and income being followed by the achievement, Korea's construction industry has made an enormous contribution to the improvement of domestic economy for the last 40 years. However, recently the increased risk in international markets as well as the sharpening competition with foreign companies promising in terms of advanced technologies and low labor cost have been driving Korean construction away from the market shares. According to ENR (Engineering News Record, 1994~2003), it is revealed that 15.1% of top 225 global contractors are suffering from loss in international construction markets. This phenomenon is largely due to the highly uncertain characteristics of international projects, which are inherently exposed to various and complicated risky situations. Furthermore, especially for Korean construction companies, it is often the case that the failure in an international construction project cannot be offset by even a sufficient number of successful domestic achievements. Therefore, not only the selective screening among the nominated projects which have strong possibility of collapse but the systematic strategies for controlling potential risk factors are also considered indispensable in international construction portfolio management. The purpose of this study is to first analyze the causal relationships of the profit-influencing variables and the project success, and develop the profitability forecasting model in international construction projects.

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.