• Title/Summary/Keyword: Collapse Factor

Search Result 231, Processing Time 0.03 seconds

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

A Study on the Stability Evaluation of Railway Embankment under Rainfall (강우시 철도 성토사면의 안정성 평가에 관한 연구)

  • 신민호;박영곤;김현기
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.203-212
    • /
    • 2000
  • In order to evaluate the stability of railway embankment under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and could be used estimate the stability of railway embankment. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.

  • PDF

Geotechnical characteristics of the collapsed $\bigcirc\bigcirc$tunnel slope in Yeosu-Suncheon area (여수-순천 도로확장공사 구간 $\bigcirc\bigcirc$터널 붕괴사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yup;Rhee, Jong-Hyun;Kim, Seung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.848-857
    • /
    • 2008
  • In September 2007, the collapses of slopes and landslides are happened at Jeonlanamdo due to heavy rains accompanied with Typoon "Nari". The study area is the tunnel portal slope in new road construction site. This slope consists of pyroclastic rocks and has lots of faults. Particularly, the residual soils of the slope is deteriorated with yellowish mudstone layer as a results of chemical and physical weathering. This has a variety of swelling clay minerals and might be moved easily down at the gentle terrain. The inner factor of $\bigcirc\bigcirc$tunnel portal slope's collapse is the geological weak zone, the convergent topography, the inferiority of drainage and the heavy rain act on the failure as direct trigger.

  • PDF

Mineral Composition Properties of Collapsed Cut Slope (붕괴절토사면의 광물조성 특성)

  • Kim, Jin-Hwan;Koo, Ho-Bon;Park, Mi-Sun;Baek, Young-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.731-734
    • /
    • 2005
  • Cut slopes are collapsed in Korea every year. Cut slope collapses cause a loss of lives and assets. Many researchers make clear collapse factor of cut lope. Fresh rock weathered through reaction undergroundwater and groundwater. During weathering process, weathered minerals are created. Weathered minerals are analysed by X-ray diffraction meter. X-ray diffraction meter make possible quantity assessment of degree of weathering and indicator of potential collapse possibilities. This paper discuss possibilities of cut slope dangerous with analysis of weathered minerals of cut slope.

  • PDF

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

A study on the stability evaluation of railway embankment under rainfall (강우시 철도 성토사면의 안정성 평가에 관한 연구)

  • 신민호;박영곤;이성혁;김현기;김경태
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.402-409
    • /
    • 2000
  • In order to evaluate the stability of railway embankment under rainfall, explanatory variables and subordinate variables wet-e selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor. The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and could be used estimate the stability of railway embankment. From the result of application to a collapse example, the evaluation method by critical rainfall curve is satisfactory.

  • PDF

Dynamic Response of Reinforced Concrete Beams Following Instantaneous Removal of a Bearing Column

  • Tian, Ying;Su, Youpo
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper documents an experimental study of dynamic response of reinforced concrete beams following instantaneous removal of a bearing column. Four half-scale specimens representing two-span beam bridging across the removed column were tested. The test boundary conditions simulated rotational and longitudinal restraints imposed on a frame beam by the neighboring structural components. The gravity loads were simulated by attaching mass blocks on the beams at three locations. Dynamic loading effects due to sudden removal of a column were simulated by quickly releasing the supporting force at the middle of the specimens. The experimental study investigated the load-carrying capacity of beams restrained longitudinally at the boundaries and dynamic impact on forces. The tests confirmed the extra flexural strength provided by compressive arch action under dynamic loading. The tests also indicated that the dynamic amplification effects on forces were much lower than that assumed in the current design guideline for progressive collapse.

A Study on the Stability Evaluation of Railway Cut-Slope Under Rainfall (강우시 철도 절개사면의 안정성 평가에 관한 연구)

  • 김현기;박영곤;신민호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.273-280
    • /
    • 2001
  • In order to evaluate the stability of railway cut-slope under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor. The 0.3 square value of maximum hourly rainfall during 24 hours before failure caused the collapse of railway cut-slope and could be used to estimate the stability of railway cut-slope. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.

  • PDF

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

Response Modification Factors and No Collapse Design of Typical Bridges (응답수정계수와 일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2017
  • The purpose of earthquake resistant design for typical bridges is the 'No Collapse Design' allowing emergency vehicles just after earthquakes. The Roadway Bridge Design Code provides design provisions to carry out such 'No Collapse Design' with a ductile mechanism and response modification factors given for connections and substructure play key role in this procedure. In case of response modification factors for substructure, the Roadway Bridge Design Code provides values considering ductility and redundancy. On the other hand, 'AASHTO LRFD Bridge Design Specifications' provides values considering additionally an artificial factor according to the bridge importance categories divided into critical, essential and others. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and different response modification factors for substructure are applied with design conditions given in the Roadway Bridge Design Code. Based on the comparison study of the design results, supplementary measures are suggested required by applying different response modification factors for substructure.