• Title/Summary/Keyword: Collaborative produce commerce

Search Result 5, Processing Time 0.023 seconds

Applying Workflow Management System to CPC (CPC에서의 Workflow 응용)

  • 전희철
    • CDE review
    • /
    • v.8 no.1
    • /
    • pp.58-65
    • /
    • 2002
  • Collaborative product commerce(CPC) involves many people working together with heterogeneous and distributed software applications. For such an environment, Workflow Management System(WFMS) can be useful for coordination of people, software agents and processes. It provides diverse services including automatic work muting, project management continuous process improvement and application integration. However, there are some limitations to apply WFMS to CPC environment due to inflexibility and lack of design support facilities. This paper identifies the problems and addresses possible approaches to overcome the difficulties.

  • PDF

A Hybrid Collaborative Filtering Method using Context-aware Information Retrieval (상황인식 정보 검색 기법을 이용한 하이브리드 협업 필터링 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.143-149
    • /
    • 2010
  • In ubiquitous environment, information retrieval using collaborative filtering is a popular technique for reducing information overload. Collaborative filtering systems can produce personal recommendations by computing the similarity between your preference and the one of other people. We integrate the collaboration filtering method and context-aware information retrieval method. The proposed method enables to find some relevant information to specific user's contexts. It aims to makes more effective information retrieval to the users. The proposed method is conceptually comprised of two main tasks. The first task is to tag context tags by automatic tagging technique. The second task is to recommend items for each user's contexts integrating collaborative filtering and information retrieval. We describe a new integration method algorithm and then present a u-commerce application prototype.

An Item-based Collaborative Filtering Technique by Associative Relation Clustering in Personalized Recommender Systems (개인화 추천 시스템에서 연관 관계 군집에 의한 아이템 기반의 협력적 필터링 기술)

  • 정경용;김진현;정헌만;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.467-477
    • /
    • 2004
  • While recommender systems were used by a few E-commerce sites former days, they are now becoming serious business tools that are re-shaping the world of I-commerce. And collaborative filtering has been a very successful recommendation technique in both research and practice. But there are two problems in personalized recommender systems, it is First-Rating problem and Sparsity problem. In this paper, we solve these problems using the associative relation clustering and “Lift” of association rules. We produce “Lift” between items using user's rating data. And we apply Threshold by -cut to the association between items. To make an efficiency of associative relation cluster higher, we use not only the existing Hypergraph Clique Clustering algorithm but also the suggested Split Cluster method. If the cluster is completed, we calculate a similarity iten in each inner cluster. And the index is saved in the database for the fast access. We apply the creating index to predict the preference for new items. To estimate the Performance, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

A Recommendation System of Exponentially Weighted Collaborative Filtering for Products in Electronic Commerce (지수적 가중치를 적용한 협력적 상품추천시스템)

  • Lee, Gyeong-Hui;Han, Jeong-Hye;Im, Chun-Seong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.625-632
    • /
    • 2001
  • The electronic stores have realized that they need to understand their customers and to quickly response their wants and needs. To be successful in increasingly competitive Internet marketplace, recommender systems are adapting data mining techniques. One of most successful recommender technologies is collaborative filtering (CF) algorithm which recommends products to a target customer based on the information of other customers and employ statistical techniques to find a set of customers known as neighbors. However, the application of the systems, however, is not very suitable for seasonal products which are sensitive to time or season such as refrigerator or seasonal clothes. In this paper, we propose a new adjusted item-based recommendation generation algorithms called the exponentially weighted collaborative filtering recommendation (EWCFR) one that computes item-item similarities regarding seasonal products. Finally, we suggest the recommendation system with relatively high quality computing time on main memory database (MMDB) in XML since the collaborative filtering systems are needed that can quickly produce high quality recommendations with very large-scale problems.

  • PDF

Item Filtering System Using Associative Relation Clustering Split Method (연관관계 군집 분할 방법을 이용한 아이템 필터링 시스템)

  • Cho, Dong-Ju;Park, Yang-Jae;Jung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • In electronic commerce, it is important for users to recommend the proper item among large item sets with saving time and effort. Therefore, if the recommendation system can be recommended the suitable item, we will gain a good satisfaction to the user. In this paper, we proposed the associative relation clustering split method in the collaborative filtering in order to perform the accuracy and the scalability. We produce the lift between associative items using the ratings data. and then split the node group that consists of the item to improve an efficiency of the associative relation cluster. This method differs the association about the items of groups. If the association of groups is filled, the reminding items combine. To estimate the performance, the suggested method is compared with the K-means and EM in the MovieLens data set.