추천시스템은 사용자가 제공한 선호, 관심, 구매경험과 같은 정보를 근거로 하여 다른 사용자에게 가장 알맞은 정보를 제공하는 일련의 가치교환 과정인 개인화를 가능하게 하는 시스템으로 고객의 선호도를 정확히 분석하고, 정제하여 정확한 예측력으로 고객이 원하는 가장 적절한 상품을 추천 해줄 수 있어야 한다. 대부분의 추천시스템들이 협동적 필터링 기법을 적용하고 있어 본 논문에서는 협동적 필터링 기법의 연산수행 량을 개선한 새로운 결합 모델인 SOM(Self-Organizing Map) 신경망 회로와 결합한 추천시스템을 제안하였다. 먼저, 사용자 그룹을 인구통계학적인 특징으로 세그먼트하고 SOM 신경망회로를 이용하여 item 특징에 대한 선호도를 입력 값으로 학습하여 클러스터를 생성하였다. 임의의 사용자에 대한 추천은 선호도가 유사한 클러스터를 결정하여 협동적 필터링 기법을 적용하였으며, 기존의 협동적 필터링 기법의 연산 수행량과 비교 분석하였다. 또한 영화를 대상으로 한 실험을 통하여 추천효율이 향상되었음을 나타내었다.
본 연구는 추천시스템에서 협력적 필터링 알고리즘인 이웃기반의 협력적 필터링 알고리즘과 대응평균 알고리즘의 선호도 예측 결과를 이용하여 예측결과의 순위 일치성과 실제 고객에 상품 추천인 Top-N 추천의 정확도에 대하여 연구하였다. 연구결과 대응평균 알고리즘에 의한 선호도 예측 정확도의 순위 일치성과 예측치를 이용한 Top-N 추천의 정확도가 기존의 이웃기반의 협력적 필터링 알고리즘의 결과보다 우수함을 알 수 있었다. 이는 협력적 필터링 추천시스템에서 대응평균 알고리즘을 이용한 선호도 예측 결과를 이용하여 고객에게 상품추천을 하는 것이 이웃기반의 협력적 필터링 알고리즘을 이용하는 것보다 더 효과적이며 추천시스템에 대한 고객의 만족을 향상시킬 수 있을 것으로 기대된다.
인터넷을 통하여 다양한 활동을 수행하는 사용자들이 급속히 증가함에 따라 여러 그룹에 소속된 사용자들 간의 인터넷을 통한 협업과 정보 교환이 활발하게 이루어지고 있다. 또한, 이와 더불어 최근 사용자중심의 서비스가 활성화됨에 따라 개인화 된 인터넷 서비스의 중요성이 대두되고 있다. 현재, 웹 기반의 협업 수행을 지원하는 다양한 협업시스템이 있다. 하지만 이러한 협업시스템들은 개인화 된 서비스를 지원하지 않기 때문에 다양한사용자를 고려한 효과적인 협업 환경을 제공하기 어렵다. 본 논문은 CoSlide 협업시스템을 이용하여 다양한 사용자들의 협업 수행을 지원하기 위한 협업지원 포틀릿의 개발에 대하여 기술한다. 협업지원 포틀릿은 CoSlide 협업시스템 서버에서 제공하는 다양한 가상공간을 지원하며, 각 가상공간의 자원을 제어할 수 있는 여러 기능들을 제공한다. 개발된 포틀릿은 포탈을 구성하는 컴포넌트로 포함되어 다양한 사용자의 요구를 충족시킬 수 있는 협업 환경을 제공한다. 사용자는 다양한 포틀릿을 제공하는 포탈을 통하여 자신의 작업 환경을 고려한 맞춤형 인터페이스를 구성하고. 이를 이용하여 효과적으로 협업을 수행할 수 있다.
본 연구의 목적은 정보통신윤리교육을 위한 네트웍 기반의 협력학습시스템(Netclass)을 개발하는 것이다. 이 시스템은 하이브리드형의 교육시스템이며, 분산 네트웍 환경, 독립적인 컴퓨팅 환경, 웹브라우저 환경이라는 3가지 학습모드를 제공한다. 협력학습 시스템을 제작하기 위하여, 다음과 같은 연구를 수행하였다. 첫째, 정보통신윤리교육과 관련 있는 딜레마 가운데 학습 컨텐츠를 선정하고, 둘째, 학습자간의 협력과 상호작용을 통하여 타인의 생각이나 감정 그리고 행동의 결과를 미리 예측하는 체계적인 과정을 의미하는 협력적 딜레마 해결 학습 모형을 설계하였다. 셋째, 표준구조 기반의 협력학습 시스템 모델을 제시하였으며, 넷째, 네트웍 컴포넌트, DB 컴포넌트, 인터페이스 컴포넌트와 같은 다수의 컴포넌트를 개발하였다.
사람들은 자신의 더 나은 선택을 위하여 끊임없이 노력한다. 이러한 이유로 추천시스템이 개발되었으며, 1990년대 초반부터 계속해서 발전하고 있다. 그 중, 협업필터링 기법은 추천시스템 분야에서 우수한 성능을 보였으며, 기계학습이 등장하면서 기계학습을 이용한 추천시스템에 관한 연구가 활발히 진행되었다. 본 연구는 앙상블 방법 중에서 스태킹 모형을 사용하여 추천시스템을 구축하며, 실제 고객의 상품 구매 데이터를 활용하여 협업필터링과 기계학습 기반 스태킹 모형으로 추천시스템을 개발하였다. 제시한 모형의 추천 성능은 기존의 협업필터링과 기계학습 기반 추천시스템과 비교하여 모형의 우수성을 확인하며, 연구결과는 스태킹 모형을 이용한 추천시스템 모형의 추천 성능이 개선됨을 확인하였다. 향후 본 연구에서 제안한 모형은 개인이나 기업이 더 나은 선택을 하여 상품을 추천할 때 도움을 줄 것으로 기대한다.
최근, 소셜 네트워크 서비스에서 딥러닝을 활용한 추천시스템이 활발하게 연구되고 있다. 하지만 딥러닝을 이용한 추천시스템의 경우 콜드스타트 문제와 복잡한 연산으로 인해 늘어난 학습시간이 단점으로 존재한다. 본 논문에서는 사용자의 메타데이터를 활용하여 사용자 맞춤형 운동 루틴 추천 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 메타데이터(사용자의 키, 몸무게, 성, 등)를 입력받아 설계된 모델에 적용한다. 본 논문에서 제안한 운동 추천시스템 모델은 matrix factorization 알고리즘과 multi-layer perceptron을 활용한 neural collaborative filtering(NCF) 알고리즘을 기반으로 설계된다. 제안된 모델은 사용자 메타데이터와 운동 정보를 입력받아 학습을 진행한다. 학습이 완료된 모델은 특정 운동이 입력되면 사용자에게 추천도를 제공한다. 실험 결과에서 제안하는 운동 추천시스템 모델이 기존 NCF 모델보다 10% 추천 성능 향상과 50% 학습 시간 단축을 보였다.
Yang, Kangkang;Wu, Shijing;Zhao, Wenqiang;Zhou, Lu
Journal of Computing Science and Engineering
/
제9권2호
/
pp.98-107
/
2015
Hierarchical constraints and constraint satisfaction were analyzed in order to solve the problem of conflict detection in collaborative design. The constraints were divided into two sets: one set consisted of known constraints and the other of unknown constraints. The constraints of the two sets were detected with corresponding methods. The set of the known constraints was detected using an interval propagation algorithm, a back propagation (BP) neural network was proposed to detect the set with the unknown constraints. An immune algorithm (IA) was utilized to optimize the weights and the thresholds of the BP neural network, and the steps were designed for the optimization process. The results of the simulation indicated that the BP neural network that was optimized by IA has a better performance in terms of convergent speed and global searching ability than a genetic algorithm. The constraints were described using the eXtensible Markup Language (XML) for computers to be able to automatically recognize and establish the constraint network. The implementation of the conflict detection system was designed based on constraint satisfaction. A wind planetary gear train is taken as an example of collaborative design with a conflict detection system.
협력 필터링은 다수의 상업용 추천 시스템에서 구현되어 온라인 사용자들에게 성공적으로 서비스되고 있는 핵심적 기술이다. 이 기술은 현 사용자와 유사한 평가이력을 가진 다른 사용자들로부터 항목을 추천하기 때문에, 유사도 척도는 시스템 성능에 매우 큰 영향을 미친다. 본 연구에서는 기존 유사도 측정 방법의 문제점을 해결하고자 퍼지 논리에 입각하여 사용자 평가등급의 주관성 및 모호성과 사용자들의 평가 행태를 반영하는 새로운 유사도 척도를 제안한다. 성능 평가를 위한 다양한 실험을 실시하였고, 그 결과 제안 방법은 예측 정확도와 추천 정확도 면에서 우수한 성능 개선 효과를 보였다.
협력 필터링 기반의 추천시스템에서 유사도 측정은 시스템의 성능에 큰 영향을 미치는데, 이는 유사한 다른 사용자들로부터 항목을 추천받기 때문이다. 본 연구에서는 전통적인 유사도 측정 방법의 가장 큰 문제인 데이터 희소성을 극복하기 위해, 기존의 유사도 측정값과 공통평가항목수의 반영값을 최적으로 결합하는 새로운 유사도 측정방식을 제안한다. 제안 방식의 성능 평가를 위해 다양한 조건으로 실험한 결과 기존 방식들보다 우수한 예측 정확도를 나타냈으며, 구체적으로 전통적인 피어슨 상관보다 최대 약 7%, 코사인 유사도보다는 최대 약 4% 향상된 결과를 보였다.
Recently, client computing trend has been changed from server oriented information application to network based P2P(Peer to Peer) services. The conventional client/server method has the merit of accessing abundant information, on the other side P2P has the merit of synchronized community support and information exchange. P2P has four meaning of point to point, peer to peer, person to person and path to profitability. In manufacturing system field, the second meaning is interested. P2P is classified to three type such as conventional client/server, hybrid P2P and pure P2P. The third is really peer to peer concept. The related technologies with P2P are P2P searching, XML, cooperation, IPv6, computing sharing and P2P communication. This paper describes the scheme of P2P and related contents. And through the P2P based technology, a P2P-based collaborative machine and a vertical portal machine are introduced in this paper. The scheme of the machines mentioned above is suggested for cooperation in manufacturing system and u-Manufacturing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.