• 제목/요약/키워드: Collaborative Recommender Systems

검색결과 203건 처리시간 0.023초

협업필터링의 희박 행렬 문제를 위한 이행적 유사도 평가 모델 (Transitive Similarity Evaluation Model for Improving Sparsity in Collaborative Filtering)

  • 배은영;유석종
    • 한국정보기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.109-114
    • /
    • 2018
  • 협업 필터링은 사회적 추천 방식으로서 뛰어난 성능을 제공하는 대표적인 추천 시스템 알고리즘으로 폭넓게 사용되어 오고 있다. 협업 필터링은 구조적으로 아이템 평가 데이터에 의존하고 있기 때문에 평가 행렬의 희박도는 추천 성능에 직접적으로 영향을 미친다. 평가 행렬의 희박성 문제 개선을 위해 협업 필터링과 내용 기반 방법을 결합하는 복합형 추천 방법에 대한 연구는 꾸준하게 이루어져 왔으며, 본 연구에서는 협업 필터링의 희소 평가 행렬(sparse rating matrix) 문제 개선 방안의 하나로 공통 평가 아이템이 누락되어 유사도 측정이 불가능한 상황에 대처하기 위한 방법을 제안한다. 이를 위하여 사용자간 이행적 관계 그래프에 기반하는 유사도 평가 모델을 설계하고 오픈 데이터셋인 Movielens에 적용하여 추천 정확도를 측정 비교하였다.

효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법 (Collaborative Tag-based Filtering for Recommender Systems)

  • 연철;지애띠;김흥남;조근식
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.157-177
    • /
    • 2008
  • 최근 웹 2.0의 영향으로 태깅을 지원하는 인터넷 서비스들이 많아졌다. 태깅의 원래 목적은 컨텐츠를 분류하고 재검색을 용이하게 하는 것이지만, 컨텐츠에 태깅되어 있는 태그들을 분석하여 컨텐츠의 특성을 파악할 수 있다. 본 논문에서는 내용 파악이 힘든 컨텐츠들이 증가함에 따라 이러한 컨텐츠들의 효과적인 추천을 위해, 여러 사용자들에 의해 협업적으로 태깅된 정보를 이용한 여과 기법을 제시한다. 제안하는 방법은 사용자가 태깅한 정보들을 바탕으로 사용자의 관심을 파악하는 부분과 파악된 관심에 맞는 컨텐츠를 선별하는 부분으로 나뉘어진다. 사용자의 관심을 파악하는 부분은 사용자가 태깅한 정보들을 협업적 여과를 이용하고, 컨텐츠 선별은 확률적인 방법인 나이브 베이지안 분류자를 이용한다. 이를 통해 협업적 여과 방법의 문제점인 희박성 문제(sparsity problem)와 초기 사용자 문제(cold-start user probleam) 대해 기존의 방법들과 비교하여 그 효과를 보인다.

  • PDF

평가의 시간 순서를 고려한 강화 학습 기반 협력적 여과 (A Reinforcement Learning Approach to Collaborative Filtering Considering Time-sequence of Ratings)

  • 이정규;오병화;양지훈
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.31-36
    • /
    • 2012
  • 최근 사용자의 흥미에 맞는 아이템이나 서비스를 추천해 주는 추천 시스템에 대한 관심이 높아지고 있다. 최근 종료된 Netflix 경연대회(Netflix Prize)가 이 분야에 대한 연구자들의 연구 의욕을 고취시켰고, 특히 협력적 여과(Collaborative Filtering) 방법은 아이템의 종류에 상관없이 적용 가능한 범용성 때문에 활발히 연구되고 있다. 본 논문은 강화 학습을 이용해서 추천 시스템의 협력적 여과 문제를 푸는 방법을 제안한다. 강화 학습을 통해, 영화 평점 데이터에서 각 사용자가 평점을 매긴 순서에 따른 평점 간의 연관 관계를 학습하고자 하였다. 이를 위해 협력적 여과문제를 마르코프 결정 과정(Markov Decision Process)로 수학적으로 모델링하였고, 강화 학습의 가장 대표적인 알고리즘인 Q-learning을 사용해서 평가의 순서의 연관 관계를 학습하였다. 그리고 실제로 평가의 순서가 평가에 미치는 영향이 있음을 실험을 통해서 검증하였다.

이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법 (A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size)

  • 최인복;이재동
    • 정보처리학회논문지B
    • /
    • 제16B권1호
    • /
    • pp.55-62
    • /
    • 2009
  • 협업여과는 추천시스템에서 널리 사용되는 기법으로 다른 사용자의 평가를 기반으로 아이템을 추천하는 기법이다. 사용자 데이터베이스를 이용하는 메모리기반 협업여과에는 사용자기반 기법과 아이템기반 기법이 있다. 사용자기반 협업여과는 유사한 선호도를 가지는 이웃사용자들의 선호도를 바탕으로 특정 아이템에 대한 선호도를 예측하는 반면, 아이템기반 협업여과는 아이템들의 유사도를 바탕으로 특정 사용자의 선호도를 예측한다. 본 논문에서는 추천의 성능을 향상시키기 위하여 이웃사용자와 이웃아이템 크기의 비율을 가중치로 하여 사용자기반 예측값과 아이템기반 예측값을 결합함으로써 최종 예측값을 생성하는 결합예측기법을 제안한다. MovieLens 데이터 셋과 BookCrossing 데이터 셋을 이용한 실험을 통해 본 논문에서 제안한 결합예측기법이 영화와 책에 대하여 사용자기반과 아이템기반보다 예측의 정확성을 향상시킴을 보인다.

연구논문 추천시스템의 전자도서관 적용방안 (Application of Research Paper Recommender System to Digital Library)

  • 여운동;박현우;권영일;박영욱
    • 한국콘텐츠학회논문지
    • /
    • 제10권11호
    • /
    • pp.10-19
    • /
    • 2010
  • 컴퓨터와 웹의 발달은 사람들이 이용할 수 있는 정보의 양을 급격히 늘렸으며, 이로 인해 추천시스템에 대한 수요가 증가하고 있다. 전자도서관에서도 다른 분야와 마찬가지로 개인화 및 추천시스템에 대한 연구가 중요한데, 연구논문 추천시스템에 대한 연구는 극히 제한적으로 이뤄지고 있고, 국내에서는 거의 찾아보기 어려울 정도이다. 본 논문에서는 국내외에서 수행된 추천시스템에 대한 연구를 조사분석하고, 이를 토대로 전자도서관 연구논문 추천시스템 구축방안을 KISTI NDSL을 중심으로 제안한다. 현재 NDSL에서 제공하는 알리미서비스를 암묵적 방식으로 바꾸어서 이용자의 프로파일을 구축할 것과 이용자 및 메모리 기반의 협업 필터링을 병행하여 내용기반의 필터링이 가지는 연구논문 추천에서 신규성이 부족한 단점을 보완할 것을 제안한다. 또한 두 기법을 함께 사용하는 방식과 온톨로지와 분할방식에 의한 필터링을 이용하여 추천 만족도를 높이는 방식에 대해서도 제안한다.

분산 환경에서의 협력적 여과를 위한 멀티 에이전트 프레임워크 (A Multi-Agent framework for Distributed Collaborative Filtering)

  • 지애띠;연철;이승훈;조근식;김흥남
    • 지능정보연구
    • /
    • 제13권3호
    • /
    • pp.119-140
    • /
    • 2007
  • 추천 시스템은 정보의 홍수 속에서 사용자로 하여금 자신에게 더욱 가치 있고 흥미로운 정보를 선별할 수 있도록 돕는 자동화된 정보 여과 시스템이다. 최근 분산 컴퓨팅 환경에 대한 연구가 활발히 진행되면서, 지금까지의 중앙 서버에서 모든 정보를 관리하는 중앙 집중 방식의 추천 시스템에서 P2P 환경의 접근 방식으로 선회하고 있다. 협력적 여과는 상업적인 추천 시스템에서 가장 많이 사용하는 정보 여과 기법이지만, 그 성공에도 불구하고 확장성(scalability)과 데이터의 희박성(sparsity), 악의적인 사용자의 공격(shilling attack)에 대한 방어 등에 관련된 여러 제약을 갖는다. 중앙 집중 방식에서 분산된 방식으로의 변화는 추천의 신뢰성과 개인 정보의 남용 가능성에 관련한 문제점을 일부 해결할 수 있으나, 조작된 사용자 프로파일을 사용하여 추천을 조작하려는 의도를 갖는 악의적인 사용자의 공격에는 중앙 집중 방식과 마찬가지로 취약할 수 있다. 본 논문에서는 개인 정보의 오남용과 악의적인 사용자의 공격에 관련된 문제점을 해결하고, 분산된 환경에서 효과적인 협력적 여과를 수행하여 추천의 성능과 정확성을 높이기 위한 멀티 에이전트 기반의 추천 프레임워크를 제안한다. 추천의 신뢰성을 높이기 위해 사용자간의 신뢰 정보를 사용하며, 각 사용자의 개인 에이전트와 이동 에이전트간의 정보교환을 통해 효과적으로 신뢰 정보를 전파하고 분산된 유사도 계산의 효율성을 높였다.

  • PDF

m-CRM을 위한 음악추천시스템: 웹 마이닝과 서열척도를 이용한 협업 필터링 (A Music Recommender System for m-CRM: Collaborative Filtering using Web Mining and Ordinal Scale)

  • 이석기
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-54
    • /
    • 2008
  • 모바일 웹 (Web)과 관련한 기술이 점점 발달함에 따라 모바일 전자상거래 시장, 그 중에서도 벨소리나 컬러링과 같은 음악 다운로드 시장의 크기는 괄목할 만한 성장을 거듭하고 있다. 하지만, 이러한 급성장에도 불구하고 소비자들은 여전히 자신이 원하는 음악을 찾는 과정에서 많은 불편함을 겪고 있다. 이는 소비자들의 음악에 대한 재구매율을 저하시키게 되고, 모바일 음악을 제공하는 서비스 업체 입장에서도 수익 정체의 원인으로 작용할 수 있다. 따라서 고객관계 관리 측면에서 모바일 고객의 불편을 최소화함으로써 결국 수익을 더욱 많이 창출하기 위한 새로운 방법이 절실한 상황이다. 이에 본 연구는 모바일 웹 환경 하에서 소비자들이 편리하게 자신이 원하는 음악을 검색할 수 있도록 하기 위하여, 모바일 웹 마이닝과 서열척도를 활용하는 협업 필터링 기반의 새로운 음악 추천 시스템을 제안한다. 또한 실험을 통해 우리가 제안하는 새로운 추천 시스템이 기존의 추천 시스템들에 비하여 우수한 성능을 나타냄을 입증하고자 한다.

  • PDF

고객맞춤형 웹사이트 구현을 위한 개인화 디자인 프레임웍의 개발 - 디자인 추천 시스템의 활용을 중심으로 (the Development of Personalization Design framework for building Customized Website - focused on the Application of Design Recommender System)

  • 서종환
    • 디자인학연구
    • /
    • 제16권2호
    • /
    • pp.23-34
    • /
    • 2003
  • 웹사이트에서의 개인화 디자인에 대한 요구는 갈수록 증대되고 있다. 현재 많이 활용되고 있는 개인화 디자인 방법은 구축비용과 시간이 적게 든다는 장점을 가지고 있어 웹사이트에 손쉽게 적용될 수 있다. 그러나 사용자의 데이터가 축적되지 않으므로 보다 세련된 개인화가 어렵다는 단점을 가지고 있다. 본 연구에서는 웹사이트 디자인의 개인화를 위한 보다 발전된 방법으로서의 추천 시스템을 연구하였다. 그 결과로 현재 활용되고 있는 추천 시스템들의 내용과 특징에 대해서 정리하였으며 이를 바탕으로 협동적 필터링 기법을 적용한 디자인 추천 시스템을 구성하였고 그 세부적인 과정과 절차를 제안하였다.

  • PDF

추천 시스템에서의 데이터 임퓨테이션 분석 (Analysis of Data Imputation in Recommender Systems)

  • 이영남;김상욱
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1333-1337
    • /
    • 2017
  • 추천 시스템이란 사용자가 좋아할만한 개인화된 상품을 사용자에게 제안하는 것이다. 최근 상품 수의 증가로 추천 시스템의 중요성이 날로 커지고 있지만, 데이터 희소성 문제는 여전히 추천 시스템의 대표적인 문제로 남아있다. 데이터 희소성 문제는 사용자가 전체 상품 중 일부의 상품에만 평점을 부여하여, 사용자와 상품 관계를 정확히 이해하기 힘든 것을 말한다. 이를 해결하기 위해 가장 여러 가지 접근법이 있는 그 중 대표적인 것인 데이터 임퓨테이션이다. 데이터 임퓨테이션은 사용자가 평가하지 않은 상품의 평점을 추론해 평점 행렬에 채우는 방법이다. 하지만 기존 데이터 임퓨테이션 방법은 사용자가 평가하지 않은 상품에 대한 몇 가지 특성을 놓치고 있다. 본 논문에서는 기존 방법의 한계점을 정의하고, 이를 개선하는 방안 3가지를 제안한다.

하이브리드 기법을 이용한 신상품 추천문제 해결방안에 관한 연구 : 모바일 멀티미디어 컨텐츠를 중심으로 (A Hybrid Multimedia Contents Recommendation Procedure for a New Item Problem in M-commerce)

  • 김재경;조윤호;강미연;김혜경
    • 지능정보연구
    • /
    • 제12권2호
    • /
    • pp.1-15
    • /
    • 2006
  • 휴대폰, PDA등 모바일 단말기의 급속한 진화와 광범위한 보급으로 인하여 모바일 웹 서비스가 빠르게 확산되고 있으며 모바일 컨텐츠 시장 또한 급성장하고 있다. 이에 따른 새로운 멀티미디어 컨텐츠의 활발한 공급은 모바일 웹 사용자들에게 많은 멀티미디어를 획득할 수 있는 기회를 제공하는 동시에 정보과부하로 인한 컨텐츠 검색의 어려움을 겪게 하고 있다. 본 연구는 신상품에 대한 니즈가 높은 모바일 멀티미디어 컨텐츠의 특성과 기존 유선 웹 환경에 비해 열악한 모바일 웹 환경의 제약 사항을 고려하여, 모바일 웹 서비스 이용 고객이 보다 적은 노력과 비용으로 원하는 멀티미디어 컨텐츠를 신속하게 찾을 수 있도록 지원하는 개인화 된 멀티미디어 컨텐츠 추천 방법론을 개발하는 것이다. 이를 위하여 기존 추천시스템에서 대표적으로 사용되는 협업필터링(Collaborative Filtering) 기법의 한계를 보완하기 위하여 내용기반 필터링 기법(Content-based Filtering)을 결합한 하이브리드 추천 기법을 개발하였다. 제안한 하이브리드 기법은 모바일 환경에서 적은 계산으로도 높은 추천 성능과 함께 신상품추천이 가능한 방법이며, 이를 구현하기 위하여 멀티미디어 컨텐츠 추천시스템, MOBICORS-music(MOBIIe Contents Recommender System for Music)을 개발하였다.

  • PDF