DOI QR코드

DOI QR Code

Transitive Similarity Evaluation Model for Improving Sparsity in Collaborative Filtering

협업필터링의 희박 행렬 문제를 위한 이행적 유사도 평가 모델

  • 배은영 (숙명여자대학교 소프트웨어학부) ;
  • 유석종 (숙명여자대학교 소프트웨어학부)
  • Received : 2018.09.07
  • Accepted : 2018.11.03
  • Published : 2018.12.31

Abstract

Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.

협업 필터링은 사회적 추천 방식으로서 뛰어난 성능을 제공하는 대표적인 추천 시스템 알고리즘으로 폭넓게 사용되어 오고 있다. 협업 필터링은 구조적으로 아이템 평가 데이터에 의존하고 있기 때문에 평가 행렬의 희박도는 추천 성능에 직접적으로 영향을 미친다. 평가 행렬의 희박성 문제 개선을 위해 협업 필터링과 내용 기반 방법을 결합하는 복합형 추천 방법에 대한 연구는 꾸준하게 이루어져 왔으며, 본 연구에서는 협업 필터링의 희소 평가 행렬(sparse rating matrix) 문제 개선 방안의 하나로 공통 평가 아이템이 누락되어 유사도 측정이 불가능한 상황에 대처하기 위한 방법을 제안한다. 이를 위하여 사용자간 이행적 관계 그래프에 기반하는 유사도 평가 모델을 설계하고 오픈 데이터셋인 Movielens에 적용하여 추천 정확도를 측정 비교하였다.

Keywords

References

  1. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithms", in Proceedings of World Wide Web 10 Conference, pp. 285-295, May 2001.
  2. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering", Proc. of 22nd Annual International ACM SIGIR Conference, Research and Development in Information Retrieval, pp. 230-237, Aug. 1999.
  3. Z. Huang, H. Chen, and D. Zeng, "Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering", ACM Trans. Information Systems, Vol. 22, No. 1, pp. 116-142, Jan. 2004. https://doi.org/10.1145/963770.963775
  4. G. Groh and C. Ehmig, "Recommendations in Taste Related Domains: Collaborative filtering vs. Social filtering", Proc. of GROUP'07, pp. 127-136, Nov. 2007.
  5. C. Ziegler, S. McNee, J. Konstan, and G. Lausen, "Improving recommendation lists through topic diversification", WWW 2005, Chiba, Japan, pp. 22-32, Jan. 2005.
  6. G. Adomavicius and Y. Kwon, "Improving Aggregate Recommendation Diversity Using Ranking-based Techniques", IEEE Transactions on Knowledge and Data Engineering, Vol. 24, No. 5, pp. 896-911, May 2012. https://doi.org/10.1109/TKDE.2011.15
  7. N. Lathia, S. Hailes, L. Capra, and X. Amatriain, "Temporal Diversity in Recommendation Systems", SIGIR, Geneva, pp. 210-217, Jan. 2010.
  8. H. Ahn, "A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem", Information Sciences, Vol. 178, No. 1, pp. 37-51, Jan. 2008. https://doi.org/10.1016/j.ins.2007.07.024
  9. S. Yu, "Frequency-sensitive diversification in collaborative filtering", Journal of KIIT, Vol. 13, No. 7, pp. 93-98, Jul. 2015.
  10. B. Patra, R. Launonen, V. Ollikainen, and S. Nandi, "A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data", Knowledge-Based Systems, Vol. 82, pp. 163-177, Jul. 2015. https://doi.org/10.1016/j.knosys.2015.03.001

Cited by

  1. A Study on the Cross Domain Recommendation System Using Adaptive Source Domain Selection vol.17, pp.10, 2018, https://doi.org/10.14801/jkiit.2019.17.10.9