• Title/Summary/Keyword: Collaborative Recommendation System

Search Result 413, Processing Time 0.025 seconds

A Recommendation System using Dynamic Profiles and Relative Quantification

  • Lee, Se-Il;Lee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • Recommendation systems provide users with proper services using context information being input from many sensors occasionally under ubiquitous computing environment. But in case there isn't sufficient context information for service recommendation in spite of much context information, there can be problems of resulting in inexact result. In addition, in the quantification step to use context information, there are problems of classifying context information inexactly because of using an absolute classification course. In this paper, we solved the problem of lack of necessary context information for service recommendation by using dynamic profile information. We also improved the problem of absolute classification by using a relative classification of context information in quantification step. As the result of experiments, expectation preference degree was improved by 7.5% as compared with collaborative filtering methods using an absolute quantification method where context information of P2P mobile agent is used.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

A Study of Music Recommendation System in P2P Network using Collaborative Filtering (P2P 환경에서 협업 필터링을 이용한 음악 추천 시스템에 대한 연구)

  • Won, Hee-Jae;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1338-1346
    • /
    • 2008
  • In this paper, we propose a new P2P-based music recommendation system. In comparison with previous system in client-server environment, the proposed system shows higher quality of music recommendation through real-time sharing of music preference information between peers. A collaborative filtering is implemented as a recommendation algorithm. As a user preference profile, we use the inherit KID music genre index contained in all legitimate music file instead of music feature vectors as in previous research so that the proposed system can mitigate the performance degradation and high computational load caused by feature inaccuracy and feature extraction. The performance of the proposed system is evaluated in various ways with real 16-weeks transaction data provided by Korean music portal, 5 company and it shows comparative quality of recommendation with only small amount of computational load.

  • PDF

A Recommendation System of Exponentially Weighted Collaborative Filtering for Products in Electronic Commerce (지수적 가중치를 적용한 협력적 상품추천시스템)

  • Lee, Gyeong-Hui;Han, Jeong-Hye;Im, Chun-Seong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.625-632
    • /
    • 2001
  • The electronic stores have realized that they need to understand their customers and to quickly response their wants and needs. To be successful in increasingly competitive Internet marketplace, recommender systems are adapting data mining techniques. One of most successful recommender technologies is collaborative filtering (CF) algorithm which recommends products to a target customer based on the information of other customers and employ statistical techniques to find a set of customers known as neighbors. However, the application of the systems, however, is not very suitable for seasonal products which are sensitive to time or season such as refrigerator or seasonal clothes. In this paper, we propose a new adjusted item-based recommendation generation algorithms called the exponentially weighted collaborative filtering recommendation (EWCFR) one that computes item-item similarities regarding seasonal products. Finally, we suggest the recommendation system with relatively high quality computing time on main memory database (MMDB) in XML since the collaborative filtering systems are needed that can quickly produce high quality recommendations with very large-scale problems.

  • PDF

The relationship between prediction accuracy and pre-information in collaborative filtering system

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.803-811
    • /
    • 2010
  • This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.

Integration of User Profiles and Real-time Context Information Reflecting Time-based Changes for the Recommendation System

  • Lee, Se-Il;Lee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.270-275
    • /
    • 2008
  • Under ubiquitous environment, recommendation system is using the collaborative filtering methods by quantifying context information, but insufficient context information can cause inaccurate recommendation result. In order to solve such problems, the researcher used context information and user's profile. But service history information in users' profiles can have the problems of being influenced by change of the user's taste or fashion as time passes by. In addition, context information and user's profile can't be properly inter-locked according to situation, which can cause inaccurate predictability. In this paper, in case a user's taste or fashion is changed as time passes by, the researcher didn't apply bundled-up value to the user's profile but applied different weight according to change of time. And the researcher could solve the problem that context information and a user's profile can't be properly inter-locked according to situation by applying different weight to the result gained by means of collaborative filtering and then by unifying it. In such ways, the researcher could improve predictability.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

Personalized Digital Music Recommendation Based on the Collaborative Filtering (협동적 여과를 기반으로 하는 개인화된 디지털 음악 추천)

  • Kim, Jun-Tae;Kim, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.521-529
    • /
    • 2007
  • In this paper, we introduce a music recommendation system that automatically recommends music according to users' musical tastes. The recommendation system uses a graph-based collaborating filtering in which similarities between musics are saved as a graph, and so it can perform fast recommendation based on the implicit preference information. It also has capability of recommending music according to users' dynamically changing preferences as well as users' static preferences. The recommendation server is implemented as an independent server using Java, and communicates with clients according to a specified protocol. A demo web site has been built by using the server and music download data from actual users, and the accuracy of recommendation has been measured through experiments.

  • PDF

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

Developing a Book Recommendation System Using Filtering Techniques (필터링 기법을 이용한 도서 추천 시스템 구축)

  • Chung, Young-Mee;Lee, Yong-Gu
    • Journal of Information Management
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • This study examined several recommendation techniques to construct an effective book recommender system in a library. Experiments revealed that a hybrid recommendation technique is more effective than either collaborative filtering or content-based filtering technique in recommending books to be borrowed in an academic library setting. The recommendation technique based on association rule turned out the lowest in performance.