• 제목/요약/키워드: Collaborative Recommendation System

검색결과 413건 처리시간 0.025초

인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발 (Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.177-191
    • /
    • 2003
  • 상품추천시스템은 고객들에게 추천 상품 리스트를 만들어 고객들이 구매 가능성이 있는 상품을 쉽게 찾도록 도와주는 개인화 된 정보필터링 기술이다 협업 필터링(collaborative filtering)이 가장 성공적인 상품추천 기법으로 알려져 있으며 많이 이용되고 있다. 그러나, 인터넷 쇼핑몰에서 관리하는 상품과 고객의 수가 급속히 증가하면서 협업필터링에 기반 한 상품추천 시스템은 입력데이터의 희박성(Sparsity) 문제와 시스템 확장성(Scalability) 문제가 노출되고 있다. 따라서 본 연구에서는 협업필터링 기반 상품추천시스템의 상품추천 효과 및 성능을 개선하기 위해 웹 마이닝과 군집분석 기법에 기반을 둔 개인별 상품추천 방법론을 개발한다. 또한 실제 인터넷 쇼핑몰에서 개인별로 상품을 추천할 때 개발된 상품추천 방법론을 적용하여 다른 기존 상품추천 방법론과 실험적으로 비교함으로써 개발 방법론의 효과 및 성능을 검증한다.

  • PDF

영화 추천 시스템을 위한 연구: 한계점 및 해결 방법 (Survey for Movie Recommendation System: Challenge and Problem Solution)

  • 초느에진랏;마리즈아길랄;무함마드 필다우스;강성원;이경현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.594-597
    • /
    • 2022
  • Recommendation systems are a prominent approach for users to make informed automated judgments. In terms of movie recommendation systems, there are two methods used; Collaborative filtering, which is based on user similarities; and Content-based filtering which takes into account specific user's activity. However, there are still issues with these two existing methods, and to address those, a combination of collaborative and content-based filtering is employed to produce a more effective system. In addition, various similarity methodologies are used to identify parallels among users. This paper focuses on a survey of the various tactics and methods to find solutions based on the problems of the current recommendation system.

Dynamic Fuzzy Cluster based Collaborative Filtering

  • Min, Sung-Hwan;Han, Ingoo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.203-210
    • /
    • 2004
  • Due to the explosion of e-commerce, recommender systems are rapidly becoming a core tool to accelerate cross-selling and strengthen customer loyalty. There are two prevalent approaches for building recommender systems - content-based recommending and collaborative filtering. Collaborative filtering recommender systems have been very successful in both information filtering domains and e-commerce domains, and many researchers have presented variations of collaborative filtering to increase its performance. However, the current research on recommendation has paid little attention to the use of time related data in the recommendation process. Up to now there has not been any study on collaborative filtering to reflect changes in user interest. This paper proposes dynamic fuzzy clustering algorithm and apply it to collaborative filtering algorithm for dynamic recommendations. The proposed methodology detects changes in customer behavior using the customer data at different periods of time and improves the performance of recommendations using information on changes. The results of the evaluation experiment show the proposed model's improvement in making recommendations.

  • PDF

신용카드 추천을 위한 다중 프로파일 기반 협업필터링 (Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles)

  • 이원철;윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.

스마트폰 기반 사용자 정보추천 시스템 개발 (Personalized Information Recommendation System on Smartphone)

  • 김진아;권응주;강상길
    • 정보화연구
    • /
    • 제9권1호
    • /
    • pp.57-66
    • /
    • 2012
  • 최근 모바일 콘텐츠 시장이 급속도로 성장하면서 다양한 모바일 기반의 애플리케이션들이 출시되고 있다. 하지만 모바일 기기들은 일반 컴퓨터와 비교하였을 때 화면의 크기 및 입력 방법 등과 같은 제약으로 최종 이용하고자 하는 콘텐츠까지 도달하는데 많은 노력과 시간이 소요된다. 이러한 불편함을 해결하기 위해서는 사용자가 선호할 만한 정보를 예측하고 필터링 되어진 맞춤형 정보를 제공 하는 추천시스템이 필요하다. 본 연구에서는 스마트폰 기반의 사용자 정보추천 시스템을 제안한다. 정보의 필터링은 사용자 기반 협업 필터링을 이용하여 개인이 선호할 것이라 판단되는 정보를 예측하고 추천하였다. 이때 사용자 기반 협업필터링 과정에서 사용되는 유사도는 피어슨 상관계수를 가중치로 이용한 유클리디안 거리 기법의 유사도를 사용하였다. 성능 평가를 위해 음식점 추천 시나리오를 이용하였으며 이를 통해 제안 추천 시스템의 유용성을 보였다. 실험을 통하여 본 연구의 추천 서비스의 유용성을 검증하였다.

A Recommendation Procedure for Group Users in Online Communities

  • 오희영;김혜경;김재경
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.344-353
    • /
    • 2006
  • Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.

  • PDF

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.

나이브베이즈 분류모델과 협업필터링 기반 지능형 학술논문 추천시스템 연구 (A Study of Intelligent Recommendation System based on Naive Bayes Text Classification and Collaborative Filtering)

  • 이상기;이병섭;박병용;황혜경
    • 정보관리연구
    • /
    • 제41권4호
    • /
    • pp.227-249
    • /
    • 2010
  • 정보기술과 인터넷의 발달로 학술정보가 폭발적으로 증가하고 있다. 정보 과잉으로 인해 연구자들은 필요한 정보를 찾거나 필터링하는데 더 많은 시간과 노력을 투입하고 있다. 이용자들이 원하는 정보를 예측하여 관심 가질만한 정보를 선별하여 추천하는 시스템을 전문가시스템, 데이터마이닝, 정보검색 등 다양한 분야에서 오래 전부터 연구하여 왔다. 최근에는 콘텐츠기반추천시스템과 협업필터링을 결합하거나 다른 분야 모델을 접목한 하이브리드 추천시스템으로 발전하고 있다. 본 연구에서는 기존 추천시스템 문제를 해결하고 대규모 정보센터나 도서관에서 학술논문을 효율적이고 지능적으로 추천하기 위해 협업필터링과 나이브베이즈모델을 결합한 새로운 방식의 추천시스템을 제시하였다. 즉, 협업필터링 방식으로 과도한 특성화(Over-specialization) 문제를 해결하고, 나이브베이즈모델을 통해 평가정보나 이용정보가 부족한 신규콘텐츠 추천문제를 해소하였다. 본 모델을 검증하기 위해 한국과학기술정보연구원 NDSL에서 제공하는 식품과 전기 분야 학술논문에 적용하여 실험하였다. 현재 NDSL 이용자 4명에게 피드백을 받은 결과 추천논문에 상당히 만족하는 것으로 나타났다.

Collaborative filtering based Context Information for Real-time Recommendation Service in Ubiquitous Computing

  • Lee Se-ll;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.110-115
    • /
    • 2006
  • In pure P2P environment, it is possible to provide service by using a little real-time information without using accumulated information. But in case of using only a little information that was locally collected, quality of recommendation service can be fallen-off. Therefore, it is necessary to study a method to improve qualify of recommendation service by using users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information per each service field and classifying it per each user, using SOM. In addition, we could recommend proper services for users by quantifying the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.

Hybrid Product Recommendation for e-Commerce : A Clustering-based CF Algorithm

  • Ahn, Do-Hyun;Kim, Jae-Sik;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.416-425
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.

  • PDF